lg

AMD Ryzen 7 7840U testing with a Framework FRANMDCP07 (03.03 BIOS) and AMD Phoenix1 512MB on Ubuntu 23.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2401082-NE-LG897017407
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
January 08 2024
  32 Minutes
b
January 08 2024
  32 Minutes
c
January 08 2024
  32 Minutes
Invert Behavior (Only Show Selected Data)
  32 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


lgOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 7 7840U @ 5.13GHz (8 Cores / 16 Threads)Framework FRANMDCP07 (03.03 BIOS)AMD Device 14e816GB512GB Western Digital WD PC SN740 SDDPNQD-512GAMD Phoenix1 512MB (2700/2800MHz)AMD Rembrandt Radeon HD AudioMEDIATEK MT7922 802.11ax PCIUbuntu 23.106.7.0-060700rc5-generic (x86_64)GNOME Shell 45.1X Server 1.21.1.7 + Wayland4.6 Mesa 24.0~git2312160600.5d937f~oibaf~m (git-5d937f0 2023-12-16 mantic-oibaf-ppa) (LLVM 16.0.6 DRM 3.56)GCC 13.2.0ext42256x1504ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLCompilerFile-SystemScreen ResolutionLg BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: amd-pstate-epp powersave (EPP: performance) - Platform Profile: balanced - CPU Microcode: 0xa704103 - ACPI Profile: balanced- Python 3.11.6- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Vulnerable: Safe RET no microcode + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

abcResult OverviewPhoronix Test Suite100%101%102%102%103%QuicksilverPyTorchTensorFlowY-Cruncher

lgpytorch: CPU - 16 - ResNet-50pytorch: CPU - 1 - ResNet-50quicksilver: CORAL2 P2quicksilver: CTS2tensorflow: CPU - 1 - GoogLeNetpytorch: CPU - 1 - ResNet-152pytorch: CPU - 16 - Efficientnet_v2_lpytorch: CPU - 16 - ResNet-152y-cruncher: 1Btensorflow: CPU - 1 - ResNet-50quicksilver: CORAL2 P1tensorflow: CPU - 16 - AlexNettensorflow: CPU - 16 - GoogLeNetpytorch: CPU - 1 - Efficientnet_v2_ly-cruncher: 500Mtensorflow: CPU - 1 - VGG-16tensorflow: CPU - 1 - AlexNettensorflow: CPU - 16 - VGG-16tensorflow: CPU - 16 - ResNet-50abc28.6449.42218600001058000042.3720.108.5212.5037.13111.351158000089.6665.0411.9516.7453.4211.097.4621.8527.8647.70218600001091000041.5919.938.4812.3737.2111.381161000088.8565.0911.8816.7023.4211.117.4621.8429.4650.00209100001051000042.319.758.4012.5037.50711.461150000089.3965.5611.9316.6933.4111.097.4721.84OpenBenchmarking.org

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-50cba71421283529.4627.8628.64MIN: 26.85 / MAX: 29.73MIN: 25.37 / MAX: 28.2MIN: 27.24 / MAX: 29.27

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-50cba112233445550.0047.7049.42MIN: 42.81 / MAX: 51.34MIN: 40.33 / MAX: 49.08MIN: 44.8 / MAX: 51.23

Quicksilver

Quicksilver is a proxy application that represents some elements of the Mercury workload by solving a simplified dynamic Monte Carlo particle transport problem. Quicksilver is developed by Lawrence Livermore National Laboratory (LLNL) and this test profile currently makes use of the OpenMP CPU threaded code path. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P2cba5M10M15M20M25M2091000021860000218600001. (CXX) g++ options: -fopenmp -O3 -march=native

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CTS2cba2M4M6M8M10M1051000010910000105800001. (CXX) g++ options: -fopenmp -O3 -march=native

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: GoogLeNetcba102030405042.3041.5942.37

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-152cba51015202519.7519.9320.10MIN: 18.47 / MAX: 20.69MIN: 18.59 / MAX: 20.22MIN: 19.01 / MAX: 20.85

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lcba2468108.408.488.52MIN: 6.7 / MAX: 8.85MIN: 7.03 / MAX: 8.84MIN: 7.31 / MAX: 8.87

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-152cba369121512.5012.3712.50MIN: 12.06 / MAX: 13.18MIN: 12 / MAX: 13.09MIN: 12.18 / MAX: 13.17

Y-Cruncher

Y-Cruncher is a multi-threaded Pi benchmark capable of computing Pi to trillions of digits. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 1Bcba91827364537.5137.2137.13

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: ResNet-50cba369121511.4611.3811.35

Quicksilver

Quicksilver is a proxy application that represents some elements of the Mercury workload by solving a simplified dynamic Monte Carlo particle transport problem. Quicksilver is developed by Lawrence Livermore National Laboratory (LLNL) and this test profile currently makes use of the OpenMP CPU threaded code path. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P1cba2M4M6M8M10M1150000011610000115800001. (CXX) g++ options: -fopenmp -O3 -march=native

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: AlexNetcba2040608010089.3988.8589.66

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: GoogLeNetcba153045607565.5665.0965.04

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Currently this test profile is catered to CPU-based testing. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_lcba369121511.9311.8811.95MIN: 11.4 / MAX: 12.16MIN: 11.46 / MAX: 12.01MIN: 11.49 / MAX: 12.13

Y-Cruncher

Y-Cruncher is a multi-threaded Pi benchmark capable of computing Pi to trillions of digits. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 500Mcba4812162016.6916.7016.75

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: VGG-16cba0.76951.5392.30853.0783.84753.413.423.42

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: AlexNetcba369121511.0911.1111.09

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: VGG-16cba2468107.477.467.46

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: ResNet-50cba51015202521.8421.8421.85