pytorch bench

AMD Ryzen Threadripper 3990X 64-Core testing with a Gigabyte TRX40 AORUS PRO WIFI (F6 BIOS) and AMD Radeon RX 5700 8GB on Ubuntu 23.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2311179-PTS-PYTORCHB94
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
November 16 2023
  5 Hours, 10 Minutes
b
November 17 2023
  1 Hour, 39 Minutes
c
November 17 2023
  1 Hour, 38 Minutes
Invert Hiding All Results Option
  2 Hours, 49 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


pytorch benchOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen Threadripper 3990X 64-Core @ 2.90GHz (64 Cores / 128 Threads)Gigabyte TRX40 AORUS PRO WIFI (F6 BIOS)AMD Starship/Matisse128GBSamsung SSD 970 EVO Plus 500GBAMD Radeon RX 5700 8GB (1750/875MHz)AMD Navi 10 HDMI AudioDELL P2415QIntel I211 + Intel Wi-Fi 6 AX200Ubuntu 23.106.5.0-10-generic (x86_64)GNOME Shell 45.0X Server + Wayland4.6 Mesa 23.2.1-1ubuntu3 (LLVM 15.0.7 DRM 3.54)GCC 13.2.0ext43840x2160ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLCompilerFile-SystemScreen ResolutionPytorch Bench BenchmarksSystem Logs- Transparent Huge Pages: madvise- Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0x830107a- Python 3.11.6- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_rstack_overflow: Mitigation of safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

abcResult OverviewPhoronix Test Suite100%103%106%109%PyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchCPU - 1 - ResNet-50CPU - 16 - ResNet-50CPU - 256 - ResNet-152CPU - 32 - ResNet-50CPU - 512 - ResNet-50CPU - 16 - Efficientnet_v2_lCPU - 512 - ResNet-152CPU - 256 - Efficientnet_v2_lCPU - 1 - ResNet-152CPU - 1 - Efficientnet_v2_lCPU - 256 - ResNet-50CPU - 512 - Efficientnet_v2_lCPU - 64 - ResNet-152CPU - 64 - ResNet-50CPU - 16 - ResNet-152CPU - 32 - Efficientnet_v2_lCPU - 64 - Efficientnet_v2_lCPU - 32 - ResNet-152

pytorch benchpytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 256 - Efficientnet_v2_lpytorch: CPU - 512 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_lpytorch: CPU - 16 - ResNet-152pytorch: CPU - 32 - ResNet-152pytorch: CPU - 512 - ResNet-152pytorch: CPU - 64 - ResNet-152pytorch: CPU - 256 - ResNet-152pytorch: CPU - 1 - Efficientnet_v2_lpytorch: CPU - 512 - ResNet-50pytorch: CPU - 1 - ResNet-152pytorch: CPU - 64 - ResNet-50pytorch: CPU - 16 - ResNet-50pytorch: CPU - 256 - ResNet-50pytorch: CPU - 32 - ResNet-50pytorch: CPU - 1 - ResNet-50abc3.012.932.922.963.076.696.786.896.847.014.3616.598.2215.9616.8816.6617.1120.882.992.862.912.922.906.816.766.666.826.524.1716.067.8015.9916.0316.8316.0918.632.963.022.992.962.936.766.696.516.676.654.1615.648.0316.3515.5716.2716.5219.18OpenBenchmarking.org

PyTorch

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_labc0.67731.35462.03192.70923.3865SE +/- 0.04, N = 43.012.992.96MIN: 2.81 / MAX: 3.25MIN: 2.79 / MAX: 3.27MIN: 2.83 / MAX: 3.07

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_lcab0.67951.3592.03852.7183.3975SE +/- 0.02, N = 33.022.932.86MIN: 2.9 / MAX: 3.14MIN: 2.74 / MAX: 3.09MIN: 2.76 / MAX: 2.99

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_lcab0.67281.34562.01842.69123.364SE +/- 0.02, N = 32.992.922.91MIN: 2.84 / MAX: 3.16MIN: 2.78 / MAX: 3.12MIN: 2.77 / MAX: 3.03

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_lcab0.6661.3321.9982.6643.33SE +/- 0.00, N = 32.962.962.92MIN: 2.82 / MAX: 3.09MIN: 2.81 / MAX: 3.09MIN: 2.76 / MAX: 3.04

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lacb0.69081.38162.07242.76323.454SE +/- 0.03, N = 33.072.932.90MIN: 2.85 / MAX: 3.2MIN: 2.82 / MAX: 3.07MIN: 2.73 / MAX: 3.05

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-152bca246810SE +/- 0.06, N = 36.816.766.69MIN: 6.67 / MAX: 7MIN: 6.34 / MAX: 6.95MIN: 6.41 / MAX: 6.91

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: ResNet-152abc246810SE +/- 0.06, N = 36.786.766.69MIN: 6.21 / MAX: 7.03MIN: 6.63 / MAX: 6.89MIN: 6.25 / MAX: 6.86

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: ResNet-152abc246810SE +/- 0.01, N = 36.896.666.51MIN: 6.48 / MAX: 7.08MIN: 6.29 / MAX: 6.85MIN: 6.34 / MAX: 6.69

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: ResNet-152abc246810SE +/- 0.08, N = 36.846.826.67MIN: 6.51 / MAX: 7.13MIN: 6.66 / MAX: 6.95MIN: 6.48 / MAX: 6.83

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-152acb246810SE +/- 0.05, N = 37.016.656.52MIN: 6.51 / MAX: 7.22MIN: 6.45 / MAX: 6.82MIN: 6.32 / MAX: 6.71

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_labc0.9811.9622.9433.9244.905SE +/- 0.04, N = 34.364.174.16MIN: 4.07 / MAX: 4.56MIN: 3.98 / MAX: 4.35MIN: 3.9 / MAX: 4.35

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: ResNet-50abc48121620SE +/- 0.14, N = 816.5916.0615.64MIN: 15.41 / MAX: 17.89MIN: 14.68 / MAX: 16.72MIN: 15.06 / MAX: 16.39

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-152acb246810SE +/- 0.10, N = 38.228.037.80MIN: 7.88 / MAX: 8.56MIN: 7.82 / MAX: 8.21MIN: 7.62 / MAX: 8.01

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: ResNet-50cba48121620SE +/- 0.13, N = 316.3515.9915.96MIN: 15.49 / MAX: 17.11MIN: 15.31 / MAX: 16.83MIN: 14.8 / MAX: 17.08

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-50abc48121620SE +/- 0.19, N = 316.8816.0315.57MIN: 15.77 / MAX: 18.22MIN: 14.93 / MAX: 16.68MIN: 14.78 / MAX: 16.29

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-50bac48121620SE +/- 0.21, N = 316.8316.6616.27MIN: 15.98 / MAX: 17.49MIN: 15.65 / MAX: 17.93MIN: 15.45 / MAX: 16.87

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: ResNet-50acb48121620SE +/- 0.20, N = 317.1116.5216.09MIN: 15.92 / MAX: 18.06MIN: 15.52 / MAX: 17.2MIN: 15.44 / MAX: 16.98

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-50acb510152025SE +/- 0.27, N = 320.8819.1818.63MIN: 19.27 / MAX: 22.47MIN: 18.22 / MAX: 20.52MIN: 17.58 / MAX: 19.74