ddda

AMD Ryzen 9 5900HX testing with a ASUS G513QY v1.0 (G513QY.318 BIOS) and ASUS AMD Cezanne 512MB on Ubuntu 22.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2310242-PTS-DDDA020251
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts

Limit displaying results to tests within:

Creator Workloads 5 Tests
Game Development 2 Tests
HPC - High Performance Computing 3 Tests
Machine Learning 2 Tests
Multi-Core 5 Tests
Intel oneAPI 5 Tests

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Geometric Means Per-Suite/Category
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
October 23 2023
  3 Hours, 3 Minutes
b
October 24 2023
  3 Hours, 3 Minutes
Invert Hiding All Results Option
  3 Hours, 3 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


dddaOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 9 5900HX @ 3.30GHz (8 Cores / 16 Threads)ASUS G513QY v1.0 (G513QY.318 BIOS)AMD Renoir/Cezanne16GB512GB SAMSUNG MZVLQ512HBLU-00B00ASUS AMD Cezanne 512MB (2500/1000MHz)ASUS AMD Cezanne 512MBAMD Navi 21/23LQ156M1JW25Realtek RTL8111/8168/8411 + MEDIATEK MT7921 802.11ax PCIUbuntu 22.105.19.0-46-generic (x86_64)GNOME Shell 43.0X Server 1.21.1.4 + Wayland4.6 Mesa 22.2.5 (LLVM 15.0.2 DRM 3.47)1.3.224GCC 12.2.0ext41920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionDdda BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-U8K4Qv/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-U8K4Qv/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - Platform Profile: balanced - CPU Microcode: 0xa50000c - ACPI Profile: balanced - Python 3.10.7- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

a vs. b ComparisonPhoronix Test SuiteBaseline+2%+2%+4%+4%+6%+6%+8%+8%8.1%7%7%4.7%4.7%2%Single-ThreadedH.E.R.F.I - CPUH.E.R.F.I - CPUIP Shapes 3D - u8s8f32 - CPU6.4%P.V.B.D.F - CPUP.V.B.D.F - CPUD.B.s - u8s8f32 - CPU4.4%P.D.F - CPU3.1%P.D.F - CPU3.1%R.O.R.S.I2.8%Chrysler Neon 1MQuantLibOpenVINOOpenVINOoneDNNOpenVINOOpenVINOoneDNNOpenVINOOpenVINOOpenRadiossOpenRadiossab

dddaquantlib: Single-Threadedopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUonednn: IP Shapes 3D - u8s8f32 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenradioss: Rubber O-Ring Seal Installationopenradioss: Chrysler Neon 1Mopenvino: Handwritten English Recognition FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUonednn: Deconvolution Batch shapes_1d - f32 - CPUopenvino: Vehicle Detection FP16 - CPUonednn: IP Shapes 3D - f32 - CPUopenvino: Vehicle Detection FP16 - CPUopenradioss: Bumper Beamonednn: Recurrent Neural Network Training - f32 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUquantlib: Multi-Threadedopenvino: Age Gender Recognition Retail 0013 FP16 - CPUembree: Pathtracer ISPC - Asian Dragon Objopenradioss: INIVOL and Fluid Structure Interaction Drop Containerembree: Pathtracer - Crownonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Person Detection FP16 - CPUonednn: Recurrent Neural Network Inference - u8s8f32 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUeasywave: e2Asean Grid + BengkuluSept2007 Source - 240embree: Pathtracer ISPC - Asian Dragonopenvino: Face Detection Retail FP16 - CPUonednn: Recurrent Neural Network Training - u8s8f32 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenradioss: Bird Strike on Windshieldonednn: IP Shapes 1D - u8s8f32 - CPUonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUembree: Pathtracer ISPC - Crownopenvino: Face Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUonednn: Recurrent Neural Network Inference - f32 - CPUonednn: IP Shapes 1D - f32 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUeasywave: e2Asean Grid + BengkuluSept2007 Source - 2400embree: Pathtracer - Asian Dragon Objonednn: Convolution Batch Shapes Auto - f32 - CPUopenvino: Face Detection FP16 - CPUonednn: Deconvolution Batch shapes_3d - f32 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUembree: Pathtracer - Asian Dragoneasywave: e2Asean Grid + BengkuluSept2007 Source - 1200openradioss: Cell Phone Drop Testopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Face Detection FP16 - CPUopenvkl: vklBenchmarkCPU Scalaropenvkl: vklBenchmarkCPU ISPCoidn: RTLightmap.hdr.4096x4096 - CPU-Onlyoidn: RT.ldr_alb_nrm.3840x2160 - CPU-Onlyoidn: RT.hdr_alb_nrm.3840x2160 - CPU-Onlyonednn: IP Shapes 1D - bf16bf16bf16 - CPUab3384.6101.0779.113.1161715.14263.852.9010215.9251.36329.912378.09127.7362.587.6913241.0213.964297.4193.134196.1239.81100.326935.1133193.91.1410.1581936.0411.75894205.552718.62251.59180.0922.215.892719.6623.099.81173.1120.16811.71384074174.071093.26370.521.314451.923953.6510.548750.14236.0816.932751.873.8598815.475.3214143.38258.35525.0915.231120.87311.138730.8931746.076.4493632.538212.526448.371145.890.562.27971870.170.340.343659.794.4884.613.3170214.46276.253.0280815.42259.08339.172331.98125.4863.697.5651641.6414.173395.97190.684148.7240.2499.276863.2933532.71.1510.0707942.0611.68554183.172704.69250.41179.2622.315.962731.5523.199.77172.4120.08911.6688408.54189.311097.09371.691.310511.929243.6410.5768748.23235.5116.972745.693.8515815.55.3314118.2257.91524.3415.251119.45211.149830.86281747.736.4553832.559812.52448.445145.880.562.27971870.170.340.34OpenBenchmarking.org

QuantLib

QuantLib is an open-source library/framework around quantitative finance for modeling, trading and risk management scenarios. QuantLib is written in C++ with Boost and its built-in benchmark used reports the QuantLib Benchmark Index benchmark score. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMFLOPS, More Is BetterQuantLib 1.32Configuration: Single-Threadedba80016002400320040003659.73384.61. (CXX) g++ options: -O3 -march=native -fPIE -pie

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16-INT8 - Device: CPUba2040608010094.48101.07MIN: 68.79 / MAX: 147.39MIN: 58.34 / MAX: 157.51. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16-INT8 - Device: CPUba2040608010084.6179.111. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPUba0.74631.49262.23892.98523.73153.317023.11617MIN: 3.24MIN: 3.021. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Person Vehicle Bike Detection FP16 - Device: CPUba4812162014.4615.14MIN: 9.81 / MAX: 31.8MIN: 9.01 / MAX: 33.581. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Person Vehicle Bike Detection FP16 - Device: CPUba60120180240300276.25263.851. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUba0.68131.36262.04392.72523.40653.028082.90102MIN: 2.65MIN: 2.581. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Person Detection FP32 - Device: CPUba4812162015.4215.901. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Person Detection FP32 - Device: CPUba60120180240300259.08251.36MIN: 114.65 / MAX: 283.91MIN: 193.79 / MAX: 279.111. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenRadioss

OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenRadioss 2023.09.15Model: Rubber O-Ring Seal Installationba70140210280350339.17329.91

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenRadioss 2023.09.15Model: Chrysler Neon 1Mba50010001500200025002331.982378.09

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16 - Device: CPUba306090120150125.48127.73MIN: 59.84 / MAX: 169.51MIN: 61.86 / MAX: 170.651. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Handwritten English Recognition FP16 - Device: CPUba142842567063.6962.581. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPUba2468107.565167.69132MIN: 4.78MIN: 4.721. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16 - Device: CPUba102030405041.6441.02MIN: 16.14 / MAX: 58.65MIN: 16.68 / MAX: 59.231. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 3D - Data Type: f32 - Engine: CPUba4812162014.1713.96MIN: 13.89MIN: 13.691. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16 - Device: CPUba2040608010095.9797.401. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenRadioss

OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenRadioss 2023.09.15Model: Bumper Beamba4080120160200190.68193.13

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPUba90018002700360045004148.724196.12MIN: 4110.28MIN: 4122.341. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16-INT8 - Device: CPUba91827364540.2439.81MIN: 18.18 / MAX: 49.99MIN: 20.23 / MAX: 51.551. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16-INT8 - Device: CPUba2040608010099.27100.321. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUba150030004500600075006863.296935.111. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

QuantLib

QuantLib is an open-source library/framework around quantitative finance for modeling, trading and risk management scenarios. QuantLib is written in C++ with Boost and its built-in benchmark used reports the QuantLib Benchmark Index benchmark score. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMFLOPS, More Is BetterQuantLib 1.32Configuration: Multi-Threadedba7K14K21K28K35K33532.733193.91. (CXX) g++ options: -O3 -march=native -fPIE -pie

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUba0.25880.51760.77641.03521.2941.151.14MIN: 0.62 / MAX: 13.27MIN: 0.61 / MAX: 14.241. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Embree

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.3Binary: Pathtracer ISPC - Model: Asian Dragon Objba369121510.0710.16MIN: 10.01 / MAX: 10.24MIN: 10.09 / MAX: 10.41

OpenRadioss

OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenRadioss 2023.09.15Model: INIVOL and Fluid Structure Interaction Drop Containerba2004006008001000942.06936.04

Embree

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.3Binary: Pathtracer - Model: Crownba369121511.6911.76MIN: 11.56 / MAX: 12.19MIN: 11.62 / MAX: 12.36

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUba90018002700360045004183.174205.55MIN: 4111.44MIN: 4134.681. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUba60012001800240030002704.692718.62MIN: 2675.45MIN: 2683.721. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Person Detection FP16 - Device: CPUba50100150200250250.41251.59MIN: 198.85 / MAX: 278.61MIN: 193.11 / MAX: 279.861. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16 - Device: CPUba4080120160200179.26180.09MIN: 139.32 / MAX: 222.49MIN: 134.69 / MAX: 210.741. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Road Segmentation ADAS FP16 - Device: CPUba51015202522.322.21. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Person Detection FP16 - Device: CPUba4812162015.9615.891. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUba60012001800240030002731.552719.66MIN: 2695.2MIN: 2687.851. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Machine Translation EN To DE FP16 - Device: CPUba61218243023.1923.091. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16 - Device: CPUba36912159.779.81MIN: 3.5 / MAX: 26.69MIN: 3.88 / MAX: 261. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Machine Translation EN To DE FP16 - Device: CPUba4080120160200172.41173.11MIN: 149.94 / MAX: 194.53MIN: 78.45 / MAX: 198.651. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

easyWave

The easyWave software allows simulating tsunami generation and propagation in the context of early warning systems. EasyWave supports making use of OpenMP for CPU multi-threading and there are also GPU ports available but not currently incorporated as part of this test profile. The easyWave tsunami generation software is run with one of the example/reference input files for measuring the CPU execution time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BettereasyWave r34Input: e2Asean Grid + BengkuluSept2007 Source - Time: 240ba51015202520.0920.171. (CXX) g++ options: -O3 -fopenmp

Embree

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.3Binary: Pathtracer ISPC - Model: Asian Dragonba369121511.6711.71MIN: 11.6 / MAX: 11.88MIN: 11.64 / MAX: 11.93

OpenVINO

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16 - Device: CPUba90180270360450408.5407.01. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUba90018002700360045004189.314174.07MIN: 4143.38MIN: 4087.881. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16-INT8 - Device: CPUba20040060080010001097.091093.261. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenRadioss

OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenRadioss 2023.09.15Model: Bird Strike on Windshieldba80160240320400371.69370.52

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUba0.29580.59160.88741.18321.4791.310511.31445MIN: 1.25MIN: 1.261. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUba0.43410.86821.30231.73642.17051.929241.92395MIN: 1.81MIN: 1.821. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection Retail FP16-INT8 - Device: CPUba0.82131.64262.46393.28524.10653.643.65MIN: 2.33 / MAX: 13.44MIN: 2.38 / MAX: 13.371. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Embree

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.3Binary: Pathtracer ISPC - Model: Crownba369121510.5810.55MIN: 10.47 / MAX: 11.01MIN: 10.42 / MAX: 10.96

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection FP16-INT8 - Device: CPUba160320480640800748.23750.14MIN: 605.69 / MAX: 769.6MIN: 660.34 / MAX: 781.951. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16 - Device: CPUba50100150200250235.51236.081. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16 - Device: CPUba4812162016.9716.93MIN: 9.75 / MAX: 27.56MIN: 8.99 / MAX: 27.331. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPUba60012001800240030002745.692751.87MIN: 2692.58MIN: 2705.241. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 1D - Data Type: f32 - Engine: CPUba0.86851.7372.60553.4744.34253.851583.85988MIN: 3.61MIN: 3.641. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16-INT8 - Device: CPUba4812162015.5015.47MIN: 9.05 / MAX: 27.29MIN: 7.78 / MAX: 25.341. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection FP16-INT8 - Device: CPUba1.19932.39863.59794.79725.99655.335.321. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUba3K6K9K12K15K14118.2014143.381. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Vehicle Detection FP16-INT8 - Device: CPUba60120180240300257.91258.351. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16-INT8 - Device: CPUba110220330440550524.34525.091. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Weld Porosity Detection FP16-INT8 - Device: CPUba4812162015.2515.23MIN: 9.48 / MAX: 24.93MIN: 7.67 / MAX: 25.211. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

easyWave

The easyWave software allows simulating tsunami generation and propagation in the context of early warning systems. EasyWave supports making use of OpenMP for CPU multi-threading and there are also GPU ports available but not currently incorporated as part of this test profile. The easyWave tsunami generation software is run with one of the example/reference input files for measuring the CPU execution time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BettereasyWave r34Input: e2Asean Grid + BengkuluSept2007 Source - Time: 2400ba20040060080010001119.451120.871. (CXX) g++ options: -O3 -fopenmp

Embree

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.3Binary: Pathtracer - Model: Asian Dragon Objba369121511.1511.14MIN: 11.08 / MAX: 11.35MIN: 11.07 / MAX: 11.33

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPUba71421283530.8630.89MIN: 30.5MIN: 30.431. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Face Detection FP16 - Device: CPUba4008001200160020001747.731746.07MIN: 1498.79 / MAX: 1841.94MIN: 1525.74 / MAX: 1863.741. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPUba2468106.455386.44936MIN: 6.3MIN: 6.31. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUba81624324032.5632.54MIN: 32.17MIN: 31.991. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Embree

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.3Binary: Pathtracer - Model: Asian Dragonba369121512.5212.53MIN: 12.43 / MAX: 12.83MIN: 12.44 / MAX: 12.73

easyWave

The easyWave software allows simulating tsunami generation and propagation in the context of early warning systems. EasyWave supports making use of OpenMP for CPU multi-threading and there are also GPU ports available but not currently incorporated as part of this test profile. The easyWave tsunami generation software is run with one of the example/reference input files for measuring the CPU execution time. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BettereasyWave r34Input: e2Asean Grid + BengkuluSept2007 Source - Time: 1200ba100200300400500448.45448.371. (CXX) g++ options: -O3 -fopenmp

OpenRadioss

OpenRadioss is an open-source AGPL-licensed finite element solver for dynamic event analysis OpenRadioss is based on Altair Radioss and open-sourced in 2022. This open-source finite element solver is benchmarked with various example models available from https://www.openradioss.org/models/ and https://github.com/OpenRadioss/ModelExchange/tree/main/Examples. This test is currently using a reference OpenRadioss binary build offered via GitHub. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterOpenRadioss 2023.09.15Model: Cell Phone Drop Testba306090120150145.88145.89

OpenVINO

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.1Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUba0.1260.2520.3780.5040.630.560.56MIN: 0.33 / MAX: 10.22MIN: 0.31 / MAX: 10.241. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.1Model: Face Detection FP16 - Device: CPUba0.51081.02161.53242.04322.5542.272.271. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVKL

OpenVKL is the Intel Open Volume Kernel Library that offers high-performance volume computation kernels and part of the Intel oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems / Sec, More Is BetterOpenVKL 2.0.0Benchmark: vklBenchmarkCPU Scalarba204060801009797MIN: 7 / MAX: 1845MIN: 7 / MAX: 1847

OpenBenchmarking.orgItems / Sec, More Is BetterOpenVKL 2.0.0Benchmark: vklBenchmarkCPU ISPCba4080120160200187187MIN: 16 / MAX: 2472MIN: 15 / MAX: 2472

Intel Open Image Denoise

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.1Run: RTLightmap.hdr.4096x4096 - Device: CPU-Onlyba0.03830.07660.11490.15320.19150.170.17

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.1Run: RT.ldr_alb_nrm.3840x2160 - Device: CPU-Onlyba0.07650.1530.22950.3060.38250.340.34

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.1Run: RT.hdr_alb_nrm.3840x2160 - Device: CPU-Onlyba0.07650.1530.22950.3060.38250.340.34

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

74 Results Shown

QuantLib
OpenVINO:
  Handwritten English Recognition FP16-INT8 - CPU:
    ms
    FPS
oneDNN
OpenVINO:
  Person Vehicle Bike Detection FP16 - CPU:
    ms
    FPS
oneDNN
OpenVINO:
  Person Detection FP32 - CPU:
    FPS
    ms
OpenRadioss:
  Rubber O-Ring Seal Installation
  Chrysler Neon 1M
OpenVINO:
  Handwritten English Recognition FP16 - CPU:
    ms
    FPS
oneDNN
OpenVINO
oneDNN
OpenVINO
OpenRadioss
oneDNN
OpenVINO:
  Road Segmentation ADAS FP16-INT8 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16 - CPU:
    FPS
QuantLib
OpenVINO
Embree
OpenRadioss
Embree
oneDNN:
  Recurrent Neural Network Training - bf16bf16bf16 - CPU
  Recurrent Neural Network Inference - bf16bf16bf16 - CPU
OpenVINO:
  Person Detection FP16 - CPU
  Road Segmentation ADAS FP16 - CPU
  Road Segmentation ADAS FP16 - CPU
  Person Detection FP16 - CPU
oneDNN
OpenVINO:
  Machine Translation EN To DE FP16 - CPU
  Face Detection Retail FP16 - CPU
  Machine Translation EN To DE FP16 - CPU
easyWave
Embree
OpenVINO
oneDNN
OpenVINO
OpenRadioss
oneDNN:
  IP Shapes 1D - u8s8f32 - CPU
  Deconvolution Batch shapes_1d - u8s8f32 - CPU
OpenVINO
Embree
OpenVINO:
  Face Detection FP16-INT8 - CPU
  Weld Porosity Detection FP16 - CPU
  Weld Porosity Detection FP16 - CPU
oneDNN:
  Recurrent Neural Network Inference - f32 - CPU
  IP Shapes 1D - f32 - CPU
OpenVINO:
  Vehicle Detection FP16-INT8 - CPU
  Face Detection FP16-INT8 - CPU
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU
  Vehicle Detection FP16-INT8 - CPU
  Weld Porosity Detection FP16-INT8 - CPU
  Weld Porosity Detection FP16-INT8 - CPU
easyWave
Embree
oneDNN
OpenVINO
oneDNN:
  Deconvolution Batch shapes_3d - f32 - CPU
  Convolution Batch Shapes Auto - u8s8f32 - CPU
Embree
easyWave
OpenRadioss
OpenVINO:
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU
  Face Detection FP16 - CPU
OpenVKL:
  vklBenchmarkCPU Scalar
  vklBenchmarkCPU ISPC
Intel Open Image Denoise:
  RTLightmap.hdr.4096x4096 - CPU-Only
  RT.ldr_alb_nrm.3840x2160 - CPU-Only
  RT.hdr_alb_nrm.3840x2160 - CPU-Only