one ryzen

AMD Ryzen 9 7950X 16-Core testing with a ASUS ROG STRIX X670E-E GAMING WIFI (1416 BIOS) and AMD Radeon RX 7900 XT/7900 XTX on Ubuntu 23.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2310136-NE-ONERYZEN429
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts

Limit displaying results to tests within:

Creator Workloads 2 Tests
Multi-Core 2 Tests
Intel oneAPI 2 Tests

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Geometric Means Per-Suite/Category
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
a
October 13 2023
  14 Minutes
b
October 13 2023
  13 Minutes
Invert Hiding All Results Option
  14 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


one ryzenProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerCompilerFile-SystemScreen ResolutionOpenGLabAMD Ryzen 9 7950X 16-Core @ 5.88GHz (16 Cores / 32 Threads)ASUS ROG STRIX X670E-E GAMING WIFI (1416 BIOS)AMD Device 14d832GB1000GB Western Digital WDS100T1X0E-00AFY0 + 4001GB Western Digital WD_BLACK SN850X 4000GB + 64GB Flash DriveAMD Radeon RX 7900 XT/7900 XTX (2304/1249MHz)AMD Navi 31 HDMI/DPASUS MG28UIntel I225-V + Intel Wi-Fi 6 AX210/AX211/AX411Ubuntu 23.106.5.0-9-generic (x86_64)GNOME Shell 45.0X Server + WaylandGCC 13.2.0ext43840x21604.6 Mesa 23.2.1-1ubuntu3 (LLVM 15.0.7 DRM 3.54)OpenBenchmarking.orgKernel Details- Transparent Huge Pages: madviseCompiler Details- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details- Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xa601203Security Details- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of safe RET no microcode + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

a vs. b ComparisonPhoronix Test SuiteBaseline+27.2%+27.2%+54.4%+54.4%+81.6%+81.6%108.8%21.1%7.5%7.1%5.9%3.9%2.4%IP Shapes 1D - f32 - CPUIP Shapes 3D - f32 - CPURTLightmap.hdr.4096x4096 - CPU-OnlyRT.hdr_alb_nrm.3840x2160 - CPU-OnlyRT.ldr_alb_nrm.3840x2160 - CPU-OnlyIP Shapes 3D - u8s8f32 - CPUD.B.s - f32 - CPUoneDNNoneDNNIntel Open Image DenoiseIntel Open Image DenoiseIntel Open Image DenoiseoneDNNoneDNNab

one ryzenonednn: IP Shapes 1D - f32 - CPUonednn: IP Shapes 3D - f32 - CPUoidn: RTLightmap.hdr.4096x4096 - CPU-Onlyoidn: RT.hdr_alb_nrm.3840x2160 - CPU-Onlyoidn: RT.ldr_alb_nrm.3840x2160 - CPU-Onlyonednn: IP Shapes 3D - u8s8f32 - CPUonednn: Deconvolution Batch shapes_1d - f32 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUonednn: Recurrent Neural Network Inference - u8s8f32 - CPUonednn: Deconvolution Batch shapes_3d - bf16bf16bf16 - CPUonednn: IP Shapes 3D - bf16bf16bf16 - CPUonednn: Deconvolution Batch shapes_1d - bf16bf16bf16 - CPUonednn: Deconvolution Batch shapes_3d - f32 - CPUonednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUonednn: IP Shapes 1D - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUonednn: Convolution Batch Shapes Auto - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Recurrent Neural Network Training - f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUonednn: Convolution Batch Shapes Auto - f32 - CPUonednn: Recurrent Neural Network Inference - f32 - CPUab3.912954.306490.400.840.850.4009613.030450.491923649.91.488771.654992.580262.45723641.8580.4422670.6723341255.355.68811.972221252.051253.770.6180816.16304640.3621.873793.556750.430.900.900.3858542.959840.500464641.8531.476411.642022.565922.46953644.8090.4405420.6700091251.175.703961.967921253.711252.530.6186016.15854640.383OpenBenchmarking.org

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 1D - Data Type: f32 - Engine: CPUab0.88041.76082.64123.52164.4023.912951.87379MIN: 1.55MIN: 1.571. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 3D - Data Type: f32 - Engine: CPUab0.9691.9382.9073.8764.8454.306493.55675MIN: 3.22MIN: 3.191. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Intel Open Image Denoise

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.1Run: RTLightmap.hdr.4096x4096 - Device: CPU-Onlyab0.09680.19360.29040.38720.4840.400.43

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.1Run: RT.hdr_alb_nrm.3840x2160 - Device: CPU-Onlyab0.20250.4050.60750.811.01250.840.90

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.1Run: RT.ldr_alb_nrm.3840x2160 - Device: CPU-Onlyab0.20250.4050.60750.811.01250.850.90

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPUab0.09020.18040.27060.36080.4510.4009610.385854MIN: 0.31MIN: 0.311. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPUab0.68191.36382.04572.72763.40953.030452.95984MIN: 2.52MIN: 2.511. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUab0.11260.22520.33780.45040.5630.4919230.500464MIN: 0.38MIN: 0.381. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUab140280420560700649.90641.85MIN: 613.82MIN: 609.871. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPUab0.3350.671.0051.341.6751.488771.47641MIN: 1.37MIN: 1.371. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPUab0.37240.74481.11721.48961.8621.654991.64202MIN: 1.43MIN: 1.431. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPUab0.58061.16121.74182.32242.9032.580262.56592MIN: 2.32MIN: 2.321. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPUab0.55561.11121.66682.22242.7782.457232.46953MIN: 2.32MIN: 2.321. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUab140280420560700641.86644.81MIN: 608.55MIN: 609.771. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUab0.09950.1990.29850.3980.49750.4422670.440542MIN: 0.4MIN: 0.41. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPUab0.15130.30260.45390.60520.75650.6723340.670009MIN: 0.59MIN: 0.591. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUab300600900120015001255.351251.17MIN: 1208.07MIN: 1209.241. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUab1.28342.56683.85025.13366.4175.688105.70396MIN: 5.13MIN: 5.121. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPUab0.44370.88741.33111.77482.21851.972221.96792MIN: 1.65MIN: 1.651. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUab300600900120015001252.051253.71MIN: 1208.99MIN: 1208.371. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPUab300600900120015001253.771252.53MIN: 1213.65MIN: 1206.41. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUab0.13920.27840.41760.55680.6960.6180810.618601MIN: 0.57MIN: 0.571. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPUab2468106.163046.15854MIN: 5.52MIN: 5.531. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPUab140280420560700640.36640.38MIN: 609.95MIN: 612.51. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl