AVX-512 Analysis

AMD Ryzen 7 7840U testing with a PHX Ray_PEU (V1.04 BIOS) and AMD Phoenix1 512MB on Ubuntu 23.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2307083-NE-AVX512ANA67
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts

Limit displaying results to tests within:

CPU Massive 4 Tests
Creator Workloads 6 Tests
Cryptography 2 Tests
HPC - High Performance Computing 5 Tests
Machine Learning 4 Tests
Multi-Core 7 Tests
Intel oneAPI 6 Tests
Python Tests 2 Tests
Raytracing 2 Tests
Renderers 2 Tests
Server CPU Tests 2 Tests

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Geometric Means Per-Suite/Category
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Disable Color Branding
Prefer Vertical Bar Graphs
No Box Plots
On Line Graphs With Missing Data, Connect The Line Gaps

Multi-Way Comparison

Condense Comparison
Transpose Comparison

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
Ryzen 7 7840U: AVX512 Off
July 08 2023
  9 Hours, 49 Minutes
Ryzen 7 7840U: AVX512 On
July 08 2023
  8 Hours, 19 Minutes
Invert Hiding All Results Option
  9 Hours, 4 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


AVX-512 AnalysisOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 7 7840U @ 3.30GHz (8 Cores / 16 Threads)PHX Ray_PEU (V1.04 BIOS)AMD Device 14e816GB1024GB Micron_3400_MTFDKBA1T0TFHAMD Phoenix1 512MB (2700/400MHz)AMD Rembrandt Radeon HD AudioMEDIATEK MT7922 802.11ax PCIUbuntu 23.046.2.0-24-generic (x86_64)KDE Plasma 5.27.4X Server 1.21.1.74.6 Mesa 23.0.2 (LLVM 15.0.7 DRM 3.49)GCC 12.2.0ext43200x2000ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLCompilerFile-SystemScreen ResolutionAVX-512 Analysis PerformanceSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-Pa930Z/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-Pa930Z/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0xa704101 - Python 3.11.2- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

lczero: Eigenopenvkl: vklBenchmark ISPCospray-studio: 3 - 4K - 32 - Path Tracertensorflow: CPU - 64 - ResNet-50ospray-studio: 1 - 4K - 32 - Path Traceronednn: Recurrent Neural Network Training - u8s8f32 - CPUospray-studio: 1 - 1080p - 1 - Path Traceropenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUtensorflow: CPU - 64 - GoogLeNetopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUospray-studio: 3 - 1080p - 32 - Path Tracerospray-studio: 1 - 1080p - 32 - Path Tracerospray: particle_volume/pathtracer/real_timetensorflow: CPU - 16 - ResNet-50tensorflow: CPU - 16 - GoogLeNetospray-studio: 3 - 1080p - 1 - Path Tracertensorflow: CPU - 64 - AlexNetospray-studio: 1 - 4K - 1 - Path Tracerospray-studio: 3 - 4K - 1 - Path Tracercpuminer-opt: Blake-2 Sembree: Pathtracer ISPC - Asian Dragon Objembree: Pathtracer ISPC - Crownonednn: Recurrent Neural Network Inference - u8s8f32 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUembree: Pathtracer ISPC - Asian Dragonlibxsmm: 64openvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUminibude: OpenMP - BM1minibude: OpenMP - BM1openvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUospray: gravity_spheres_volume/dim_512/scivis/real_timeospray: gravity_spheres_volume/dim_512/ao/real_timeospray: gravity_spheres_volume/dim_512/pathtracer/real_timetensorflow: CPU - 16 - AlexNetcpuminer-opt: Myriad-Groestlcpuminer-opt: Magicpuminer-opt: scryptcpuminer-opt: Garlicoincpuminer-opt: Quad SHA-256, Pyritecpuminer-opt: LBC, LBRY Creditscpuminer-opt: x25xcpuminer-opt: Skeincoinonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUsmhasher: FarmHash32 x86_64 AVXsmhasher: FarmHash32 x86_64 AVXRyzen 7 7840U AVX512 Off AVX512 On463927395758.545979235003.2344564390.070.912570.311.5624.8716.84237.4530.53131.1323.20344.8218785314776493.51828.8425.78570764.7918088224793159257.23296.85562748.201.654781.198.0917155.34387.550.911252.113.1811.628290.697233.1717.1318.83212.1523.48170.201.495336.561.137241.194871.9576446.2113910365.61128.052009.385853322030348.69639072.869451.680583.3699826.43836442.7665511462876716.745489034354.1741922242.451.781143.203.5048.0511.10359.9721.53185.7212.49639.05161258138553101.80816.4451.195060113.5816567190645314778.55957.91862371.620.7710275.459.9584168.02252.821.77578.356.9114.884372.100109.6836.4611.88336.1312.05331.311.276240.041.978141.988702.4695677.6526160351.21166.572752.278762743903374.95783001.527070.9444321.6163326.39040077.59OpenBenchmarking.org

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.28Backend: EigenAVX512 OnAVX512 Off140280420560700SE +/- 12.23, N = 9SE +/- 11.93, N = 96554631. (CXX) g++ options: -flto -pthread

OpenVKL

OpenVKL is the Intel Open Volume Kernel Library that offers high-performance volume computation kernels and part of the Intel oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems / Sec, More Is BetterOpenVKL 1.3.1Benchmark: vklBenchmark ISPCAVX512 OnAVX512 Off306090120150SE +/- 1.61, N = 9SE +/- 1.30, N = 911492MIN: 13 / MAX: 1839MIN: 10 / MAX: 1437

OSPRay Studio

Intel OSPRay Studio is an open-source, interactive visualization and ray-tracing software package. OSPRay Studio makes use of Intel OSPRay, a portable ray-tracing engine for high-performance, high-fidelity visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 4K - Samples Per Pixel: 32 - Renderer: Path TracerAVX512 OnAVX512 Off160K320K480K640K800KSE +/- 4373.49, N = 3SE +/- 6114.98, N = 36287677395751. (CXX) g++ options: -O3 -lm -ldl

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: ResNet-50AVX512 OnAVX512 Off48121620SE +/- 0.20, N = 3SE +/- 0.01, N = 316.748.54

OSPRay Studio

Intel OSPRay Studio is an open-source, interactive visualization and ray-tracing software package. OSPRay Studio makes use of Intel OSPRay, a portable ray-tracing engine for high-performance, high-fidelity visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 4K - Samples Per Pixel: 32 - Renderer: Path TracerAVX512 OnAVX512 Off130K260K390K520K650KSE +/- 3927.76, N = 3SE +/- 5872.37, N = 35489035979231. (CXX) g++ options: -O3 -lm -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUAVX512 OnAVX512 Off11002200330044005500SE +/- 84.98, N = 12SE +/- 91.64, N = 154354.175003.23MIN: 3672.42MIN: 4002.461. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OSPRay Studio

Intel OSPRay Studio is an open-source, interactive visualization and ray-tracing software package. OSPRay Studio makes use of Intel OSPRay, a portable ray-tracing engine for high-performance, high-fidelity visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 1080p - Samples Per Pixel: 1 - Renderer: Path TracerAVX512 OnAVX512 Off10002000300040005000SE +/- 36.74, N = 12SE +/- 46.49, N = 3419244561. (CXX) g++ options: -O3 -lm -ldl

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUAVX512 OnAVX512 Off9001800270036004500SE +/- 36.55, N = 12SE +/- 43.35, N = 152242.454390.07MIN: 1833.67 / MAX: 2481.74MIN: 3908.72 / MAX: 4679.851. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUAVX512 OnAVX512 Off0.40050.8011.20151.6022.0025SE +/- 0.03, N = 12SE +/- 0.01, N = 151.780.911. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUAVX512 OnAVX512 Off6001200180024003000SE +/- 15.69, N = 12SE +/- 44.91, N = 151143.202570.31MIN: 992.31 / MAX: 1244.55MIN: 2049 / MAX: 2793.241. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUAVX512 OnAVX512 Off0.78751.5752.36253.153.9375SE +/- 0.05, N = 12SE +/- 0.03, N = 153.501.561. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: GoogLeNetAVX512 OnAVX512 Off1122334455SE +/- 0.53, N = 4SE +/- 0.08, N = 348.0524.87

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUAVX512 OnAVX512 Off48121620SE +/- 0.09, N = 15SE +/- 0.19, N = 311.1016.84MIN: 6.52 / MAX: 49.24MIN: 12.24 / MAX: 32.261. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUAVX512 OnAVX512 Off80160240320400SE +/- 3.22, N = 15SE +/- 2.68, N = 3359.97237.451. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUAVX512 OnAVX512 Off714212835SE +/- 0.29, N = 3SE +/- 0.33, N = 1521.5330.53MIN: 12.47 / MAX: 43.64MIN: 20.33 / MAX: 68.231. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUAVX512 OnAVX512 Off4080120160200SE +/- 2.58, N = 3SE +/- 1.48, N = 15185.72131.131. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUAVX512 OnAVX512 Off612182430SE +/- 0.08, N = 3SE +/- 0.18, N = 1512.4923.20MIN: 8.3 / MAX: 21.54MIN: 17.03 / MAX: 63.151. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUAVX512 OnAVX512 Off140280420560700SE +/- 3.92, N = 3SE +/- 2.55, N = 15639.05344.821. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OSPRay Studio

Intel OSPRay Studio is an open-source, interactive visualization and ray-tracing software package. OSPRay Studio makes use of Intel OSPRay, a portable ray-tracing engine for high-performance, high-fidelity visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 1080p - Samples Per Pixel: 32 - Renderer: Path TracerAVX512 OnAVX512 Off40K80K120K160K200KSE +/- 466.38, N = 3SE +/- 2250.38, N = 31612581878531. (CXX) g++ options: -O3 -lm -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 1080p - Samples Per Pixel: 32 - Renderer: Path TracerAVX512 OnAVX512 Off30K60K90K120K150KSE +/- 1719.79, N = 4SE +/- 922.16, N = 31385531477641. (CXX) g++ options: -O3 -lm -ldl

OSPRay

Intel OSPRay is a portable ray-tracing engine for high-performance, high-fidelity scientific visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.12Benchmark: particle_volume/pathtracer/real_timeAVX512 OnAVX512 Off20406080100SE +/- 0.25, N = 3SE +/- 0.14, N = 3101.8193.52

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: ResNet-50AVX512 OnAVX512 Off48121620SE +/- 0.08, N = 3SE +/- 0.00, N = 316.448.84

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: GoogLeNetAVX512 OnAVX512 Off1224364860SE +/- 0.32, N = 3SE +/- 0.19, N = 1151.1925.78

OSPRay Studio

Intel OSPRay Studio is an open-source, interactive visualization and ray-tracing software package. OSPRay Studio makes use of Intel OSPRay, a portable ray-tracing engine for high-performance, high-fidelity visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 1080p - Samples Per Pixel: 1 - Renderer: Path TracerAVX512 OnAVX512 Off12002400360048006000SE +/- 57.01, N = 3SE +/- 29.78, N = 3506057071. (CXX) g++ options: -O3 -lm -ldl

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: AlexNetAVX512 OnAVX512 Off306090120150SE +/- 0.62, N = 3SE +/- 0.71, N = 5113.5864.79

OSPRay Studio

Intel OSPRay Studio is an open-source, interactive visualization and ray-tracing software package. OSPRay Studio makes use of Intel OSPRay, a portable ray-tracing engine for high-performance, high-fidelity visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 4K - Samples Per Pixel: 1 - Renderer: Path TracerAVX512 OnAVX512 Off4K8K12K16K20KSE +/- 185.50, N = 4SE +/- 66.23, N = 316567180881. (CXX) g++ options: -O3 -lm -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 4K - Samples Per Pixel: 1 - Renderer: Path TracerAVX512 OnAVX512 Off5K10K15K20K25KSE +/- 180.02, N = 3SE +/- 44.38, N = 319064224791. (CXX) g++ options: -O3 -lm -ldl

Cpuminer-Opt

Cpuminer-Opt is a fork of cpuminer-multi that carries a wide range of CPU performance optimizations for measuring the potential cryptocurrency mining performance of the CPU/processor with a wide variety of cryptocurrencies. The benchmark reports the hash speed for the CPU mining performance for the selected cryptocurrency. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: Blake-2 SAVX512 OnAVX512 Off110K220K330K440K550KSE +/- 4566.14, N = 3SE +/- 2454.54, N = 155314773159251. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

Embree

Intel Embree is a collection of high-performance ray-tracing kernels for execution on CPUs (and GPUs via SYCL) and supporting instruction sets such as SSE, AVX, AVX2, and AVX-512. Embree also supports making use of the Intel SPMD Program Compiler (ISPC). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.1Binary: Pathtracer ISPC - Model: Asian Dragon ObjAVX512 OnAVX512 Off246810SE +/- 0.1142, N = 3SE +/- 0.0412, N = 38.55957.2329MIN: 8.31 / MAX: 8.97MIN: 7.04 / MAX: 7.55

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.1Binary: Pathtracer ISPC - Model: CrownAVX512 OnAVX512 Off246810SE +/- 0.0891, N = 3SE +/- 0.0389, N = 37.91866.8556MIN: 7.65 / MAX: 8.35MIN: 6.66 / MAX: 7.15

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUAVX512 OnAVX512 Off6001200180024003000SE +/- 20.46, N = 3SE +/- 10.85, N = 32371.622748.20MIN: 2280.95MIN: 2675.291. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUAVX512 OnAVX512 Off0.37130.74261.11391.48521.8565SE +/- 0.00, N = 3SE +/- 0.02, N = 50.771.65MIN: 0.44 / MAX: 31.76MIN: 1.04 / MAX: 65.911. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUAVX512 OnAVX512 Off2K4K6K8K10KSE +/- 23.21, N = 3SE +/- 49.53, N = 510275.454781.191. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

Embree

Intel Embree is a collection of high-performance ray-tracing kernels for execution on CPUs (and GPUs via SYCL) and supporting instruction sets such as SSE, AVX, AVX2, and AVX-512. Embree also supports making use of the Intel SPMD Program Compiler (ISPC). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.1Binary: Pathtracer ISPC - Model: Asian DragonAVX512 OnAVX512 Off3691215SE +/- 0.0930, N = 3SE +/- 0.0474, N = 39.95848.0917MIN: 9.63 / MAX: 10.55MIN: 7.92 / MAX: 8.46

libxsmm

Libxsmm is an open-source library for specialized dense and sparse matrix operations and deep learning primitives. Libxsmm supports making use of Intel AMX, AVX-512, and other modern CPU instruction set capabilities. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFLOPS/s, More Is Betterlibxsmm 2-1.17-3645M N K: 64AVX512 OnAVX512 Off4080120160200SE +/- 1.19, N = 3SE +/- 1.56, N = 3168.0155.31. (CXX) g++ options: -dynamic -Bstatic -static-libgcc -lgomp -lm -lrt -ldl -lquadmath -lstdc++ -pthread -fPIC -std=c++14 -pedantic -O2 -fopenmp -fopenmp-simd -funroll-loops -ftree-vectorize -fdata-sections -ffunction-sections -fvisibility=hidden -march=core-avx2

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUAVX512 OnAVX512 Off9001800270036004500SE +/- 21.58, N = 3SE +/- 16.00, N = 32252.824387.55MIN: 2082.67 / MAX: 2367MIN: 4147.08 / MAX: 4543.031. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUAVX512 OnAVX512 Off0.39830.79661.19491.59321.9915SE +/- 0.02, N = 3SE +/- 0.00, N = 31.770.911. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUAVX512 OnAVX512 Off30060090012001500SE +/- 0.78, N = 3SE +/- 9.28, N = 3578.351252.11MIN: 526.21 / MAX: 640.83MIN: 1052.1 / MAX: 1331.961. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUAVX512 OnAVX512 Off246810SE +/- 0.01, N = 3SE +/- 0.02, N = 36.913.181. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

miniBUDE

MiniBUDE is a mini application for the the core computation of the Bristol University Docking Engine (BUDE). This test profile currently makes use of the OpenMP implementation of miniBUDE for CPU benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgBillion Interactions/s, More Is BetterminiBUDE 20210901Implementation: OpenMP - Input Deck: BM1AVX512 OnAVX512 Off48121620SE +/- 0.15, N = 3SE +/- 0.14, N = 314.8811.631. (CC) gcc options: -std=c99 -Ofast -ffast-math -fopenmp -march=native -lm

OpenBenchmarking.orgGFInst/s, More Is BetterminiBUDE 20210901Implementation: OpenMP - Input Deck: BM1AVX512 OnAVX512 Off80160240320400SE +/- 3.72, N = 3SE +/- 3.42, N = 3372.10290.701. (CC) gcc options: -std=c99 -Ofast -ffast-math -fopenmp -march=native -lm

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUAVX512 OnAVX512 Off50100150200250SE +/- 0.99, N = 3SE +/- 1.31, N = 3109.68233.17MIN: 84.64 / MAX: 182.05MIN: 159.4 / MAX: 539.641. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUAVX512 OnAVX512 Off816243240SE +/- 0.33, N = 3SE +/- 0.10, N = 336.4617.131. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUAVX512 OnAVX512 Off510152025SE +/- 0.11, N = 3SE +/- 0.07, N = 311.8818.83MIN: 7.65 / MAX: 48.46MIN: 12.5 / MAX: 37.961. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUAVX512 OnAVX512 Off70140210280350SE +/- 3.29, N = 3SE +/- 0.75, N = 3336.13212.151. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUAVX512 OnAVX512 Off612182430SE +/- 0.12, N = 3SE +/- 0.22, N = 312.0523.48MIN: 8.18 / MAX: 20.36MIN: 17.58 / MAX: 65.41. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUAVX512 OnAVX512 Off70140210280350SE +/- 3.20, N = 3SE +/- 1.57, N = 3331.31170.201. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUAVX512 OnAVX512 Off0.33530.67061.00591.34121.6765SE +/- 0.02, N = 3SE +/- 0.02, N = 31.271.49MIN: 0.8 / MAX: 27.28MIN: 0.87 / MAX: 5.841. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUAVX512 OnAVX512 Off13002600390052006500SE +/- 89.90, N = 3SE +/- 61.26, N = 36240.045336.561. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OSPRay

Intel OSPRay is a portable ray-tracing engine for high-performance, high-fidelity scientific visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.12Benchmark: gravity_spheres_volume/dim_512/scivis/real_timeAVX512 OnAVX512 Off0.44510.89021.33531.78042.2255SE +/- 0.01375, N = 3SE +/- 0.00398, N = 31.978141.13724

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.12Benchmark: gravity_spheres_volume/dim_512/ao/real_timeAVX512 OnAVX512 Off0.44750.8951.34251.792.2375SE +/- 0.01322, N = 3SE +/- 0.00129, N = 31.988701.19487

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.12Benchmark: gravity_spheres_volume/dim_512/pathtracer/real_timeAVX512 OnAVX512 Off0.55571.11141.66712.22282.7785SE +/- 0.01551, N = 3SE +/- 0.00675, N = 32.469561.95764

TensorFlow

This is a benchmark of the TensorFlow deep learning framework using the TensorFlow reference benchmarks (tensorflow/benchmarks with tf_cnn_benchmarks.py). Note with the Phoronix Test Suite there is also pts/tensorflow-lite for benchmarking the TensorFlow Lite binaries if desired for complementary metrics. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: AlexNetAVX512 OnAVX512 Off20406080100SE +/- 0.18, N = 3SE +/- 0.03, N = 377.6546.21

Cpuminer-Opt

Cpuminer-Opt is a fork of cpuminer-multi that carries a wide range of CPU performance optimizations for measuring the potential cryptocurrency mining performance of the CPU/processor with a wide variety of cryptocurrencies. The benchmark reports the hash speed for the CPU mining performance for the selected cryptocurrency. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: Myriad-GroestlAVX512 OnAVX512 Off6K12K18K24K30KSE +/- 73.71, N = 3SE +/- 62.45, N = 326160139101. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: MagiAVX512 OnAVX512 Off80160240320400SE +/- 1.18, N = 3SE +/- 1.15, N = 3351.21365.611. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: scryptAVX512 OnAVX512 Off4080120160200SE +/- 0.83, N = 3SE +/- 0.43, N = 3166.57128.051. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: GarlicoinAVX512 OnAVX512 Off6001200180024003000SE +/- 15.25, N = 3SE +/- 17.03, N = 32752.272009.381. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: Quad SHA-256, PyriteAVX512 OnAVX512 Off20K40K60K80K100KSE +/- 217.36, N = 3SE +/- 69.60, N = 387627585331. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: LBC, LBRY CreditsAVX512 OnAVX512 Off9K18K27K36K45KSE +/- 327.43, N = 3SE +/- 83.27, N = 343903220301. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: x25xAVX512 OnAVX512 Off80160240320400SE +/- 2.44, N = 3SE +/- 0.87, N = 3374.95348.691. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: SkeincoinAVX512 OnAVX512 Off20K40K60K80K100KSE +/- 587.57, N = 3SE +/- 336.52, N = 378300639071. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUAVX512 OnAVX512 Off0.64561.29121.93682.58243.228SE +/- 0.01623, N = 3SE +/- 0.03232, N = 31.527072.86945MIN: 1.2MIN: 2.231. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUAVX512 OnAVX512 Off0.37810.75621.13431.51241.8905SE +/- 0.005008, N = 4SE +/- 0.015865, N = 40.9444321.680580MIN: 0.8MIN: 1.411. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUAVX512 OnAVX512 Off0.75821.51642.27463.03283.791SE +/- 0.01465, N = 15SE +/- 0.03292, N = 151.616333.36998MIN: 1.18MIN: 2.691. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

SMHasher

SMHasher is a hash function tester supporting various algorithms and able to make use of AVX and other modern CPU instruction set extensions. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgcycles/hash, Fewer Is BetterSMHasher 2022-08-22Hash: FarmHash32 x86_64 AVXAVX512 OnAVX512 Off612182430SE +/- 0.00, N = 6SE +/- 0.02, N = 626.3926.441. (CXX) g++ options: -march=native -O3 -flto=auto -fno-fat-lto-objects

OpenBenchmarking.orgMiB/sec, More Is BetterSMHasher 2022-08-22Hash: FarmHash32 x86_64 AVXAVX512 OnAVX512 Off9K18K27K36K45KSE +/- 5.74, N = 6SE +/- 89.33, N = 640077.5936442.761. (CXX) g++ options: -march=native -O3 -flto=auto -fno-fat-lto-objects

System Temperature Monitor

OpenBenchmarking.orgCelsiusSystem Temperature MonitorPhoronix Test Suite System MonitoringAVX512 OnAVX512 Off20406080100Min: 31 / Avg: 66.6 / Max: 92Min: 38 / Avg: 67.22 / Max: 92

CPU Temperature Monitor

OpenBenchmarking.orgCelsiusCPU Temperature MonitorPhoronix Test Suite System MonitoringAVX512 OnAVX512 Off20406080100Min: 31.25 / Avg: 67.05 / Max: 92.13Min: 38.88 / Avg: 67.66 / Max: 92

CPU Power Consumption Monitor

OpenBenchmarking.orgWattsCPU Power Consumption MonitorPhoronix Test Suite System MonitoringAVX512 OnAVX512 Off714212835Min: 1.27 / Avg: 15.88 / Max: 30.82Min: 1.3 / Avg: 16.39 / Max: 30.21

CPU Peak Freq (Highest CPU Core Frequency) Monitor

OpenBenchmarking.orgMegahertzCPU Peak Freq (Highest CPU Core Frequency) MonitorPhoronix Test Suite System MonitoringAVX512 OnAVX512 Off9001800270036004500Min: 1397 / Avg: 2761.55 / Max: 5115Min: 1114 / Avg: 2621.67 / Max: 5115

70 Results Shown

LeelaChessZero
OpenVKL
OSPRay Studio
TensorFlow
OSPRay Studio
oneDNN
OSPRay Studio
OpenVINO:
  Person Detection FP16 - CPU:
    ms
    FPS
  Face Detection FP16 - CPU:
    ms
    FPS
TensorFlow
OpenVINO:
  Vehicle Detection FP16-INT8 - CPU:
    ms
    FPS
  Vehicle Detection FP16 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
OSPRay Studio:
  3 - 1080p - 32 - Path Tracer
  1 - 1080p - 32 - Path Tracer
OSPRay
TensorFlow:
  CPU - 16 - ResNet-50
  CPU - 16 - GoogLeNet
OSPRay Studio
TensorFlow
OSPRay Studio:
  1 - 4K - 1 - Path Tracer
  3 - 4K - 1 - Path Tracer
Cpuminer-Opt
Embree:
  Pathtracer ISPC - Asian Dragon Obj
  Pathtracer ISPC - Crown
oneDNN
OpenVINO:
  Age Gender Recognition Retail 0013 FP16 - CPU:
    ms
    FPS
Embree
libxsmm
OpenVINO:
  Person Detection FP32 - CPU:
    ms
    FPS
  Face Detection FP16-INT8 - CPU:
    ms
    FPS
miniBUDE:
  OpenMP - BM1:
    Billion Interactions/s
    GFInst/s
OpenVINO:
  Machine Translation EN To DE FP16 - CPU:
    ms
    FPS
  Person Vehicle Bike Detection FP16 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
OSPRay:
  gravity_spheres_volume/dim_512/scivis/real_time
  gravity_spheres_volume/dim_512/ao/real_time
  gravity_spheres_volume/dim_512/pathtracer/real_time
TensorFlow
Cpuminer-Opt:
  Myriad-Groestl
  Magi
  scrypt
  Garlicoin
  Quad SHA-256, Pyrite
  LBC, LBRY Credits
  x25x
  Skeincoin
oneDNN:
  Deconvolution Batch shapes_1d - u8s8f32 - CPU
  IP Shapes 1D - u8s8f32 - CPU
  Deconvolution Batch shapes_3d - u8s8f32 - CPU
SMHasher:
  FarmHash32 x86_64 AVX:
    cycles/hash
    MiB/sec
System Temperature Monitor:
  Phoronix Test Suite System Monitoring:
    Celsius
    Celsius
    Watts
    Megahertz