AVX-512 Analysis

AMD Ryzen 7 7840U testing with a PHX Ray_PEU (V1.04 BIOS) and AMD Phoenix1 512MB on Ubuntu 23.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2307079-NE-AVX512ANA28
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs
No Box Plots
On Line Graphs With Missing Data, Connect The Line Gaps

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs
Condense Test Profiles With Multiple Version Results Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
AVX512 On
July 06 2023
  8 Hours, 42 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


AVX-512 AnalysisOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 7 7840U @ 3.30GHz (8 Cores / 16 Threads)PHX Ray_PEU (V1.04 BIOS)AMD Device 14e816GB1024GB Micron_3400_MTFDKBA1T0TFHAMD Phoenix1 512MB (2700/400MHz)AMD Rembrandt Radeon HD AudioMEDIATEK MT7922 802.11ax PCIUbuntu 23.046.2.0-24-generic (x86_64)KDE Plasma 5.27.4X Server 1.21.1.74.6 Mesa 23.0.2 (LLVM 15.0.7 DRM 3.49)GCC 12.2.0ext43200x2000ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLCompilerFile-SystemScreen ResolutionAVX-512 Analysis PerformanceSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-Pa930Z/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-Pa930Z/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0xa704101 - Python 3.11.2- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

AVX-512 Analysislczero: Eigenembree: Pathtracer ISPC - Asian Dragonembree: Pathtracer ISPC - Asian Dragon Objembree: Pathtracer ISPC - Crownsimdjson: PartialTweetssimdjson: LargeRandsimdjson: Kostyasimdjson: DistinctUserIDsimdjson: TopTweetopenvkl: vklBenchmark ISPCoidn: RT.hdr_alb_nrm.3840x2160 - CPU-Onlyoidn: RT.ldr_alb_nrm.3840x2160 - CPU-Onlyoidn: RTLightmap.hdr.4096x4096 - CPU-Onlyospray: gravity_spheres_volume/dim_512/ao/real_timeospray: gravity_spheres_volume/dim_512/scivis/real_timeospray: gravity_spheres_volume/dim_512/pathtracer/real_timeospray: particle_volume/pathtracer/real_timeospray-studio: 1 - 1080p - 1 - Path Tracerospray-studio: 1 - 1080p - 32 - Path Tracerospray-studio: 1 - 4K - 1 - Path Tracerospray-studio: 1 - 4K - 32 - Path Tracerospray-studio: 3 - 1080p - 1 - Path Tracerospray-studio: 3 - 1080p - 32 - Path Tracerospray-studio: 3 - 4K - 1 - Path Tracerospray-studio: 3 - 4K - 32 - Path Traceronednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUonednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Recurrent Neural Network Inference - u8s8f32 - CPUcpuminer-opt: scryptcpuminer-opt: Quad SHA-256, Pyritecpuminer-opt: Myriad-Groestlcpuminer-opt: Magicpuminer-opt: Blake-2 Scpuminer-opt: x25xcpuminer-opt: Garlicoincpuminer-opt: Skeincoincpuminer-opt: LBC, LBRY Creditsopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUminibude: OpenMP - BM1minibude: OpenMP - BM1smhasher: FarmHash32 x86_64 AVXsmhasher: FarmHash32 x86_64 AVXlibxsmm: 64tensorflow: CPU - 16 - ResNet-50tensorflow: CPU - 16 - AlexNettensorflow: CPU - 16 - GoogLeNettensorflow: CPU - 64 - ResNet-50tensorflow: CPU - 64 - AlexNettensorflow: CPU - 64 - GoogLeNetAVX512 On56710.00338.60818.05237.511.575.068.788.671120.270.270.132.150932.110432.63644105.3553869129296153245119354801154509187036148691.408121.586660.9372574281.312234.12175.309687728233369.97564430396.502955.6381859445173.461160.986.67599.119779.570.815958.161.331.902097.521.892108.54678.0911.76353.2511.30396.5610.07185.8321.52359.1211.1238.32104.35408.05716.32240035.1526.391168.417.9380.0155.1216.75114.8148.14OpenBenchmarking.org

LeelaChessZero

LeelaChessZero (lc0 / lczero) is a chess engine automated vian neural networks. This test profile can be used for OpenCL, CUDA + cuDNN, and BLAS (CPU-based) benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.28Backend: EigenAVX512 On120240360480600SE +/- 5.89, N = 55671. (CXX) g++ options: -flto -pthread

Embree

Intel Embree is a collection of high-performance ray-tracing kernels for execution on CPUs (and GPUs via SYCL) and supporting instruction sets such as SSE, AVX, AVX2, and AVX-512. Embree also supports making use of the Intel SPMD Program Compiler (ISPC). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.1Binary: Pathtracer ISPC - Model: Asian DragonAVX512 On3691215SE +/- 0.03, N = 310.00MIN: 9.86 / MAX: 10.33

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.1Binary: Pathtracer ISPC - Model: Asian Dragon ObjAVX512 On246810SE +/- 0.0092, N = 38.6081MIN: 8.45 / MAX: 8.89

OpenBenchmarking.orgFrames Per Second, More Is BetterEmbree 4.1Binary: Pathtracer ISPC - Model: CrownAVX512 On246810SE +/- 0.0666, N = 38.0523MIN: 7.85 / MAX: 8.34

simdjson

This is a benchmark of SIMDJSON, a high performance JSON parser. SIMDJSON aims to be the fastest JSON parser and is used by projects like Microsoft FishStore, Yandex ClickHouse, Shopify, and others. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: PartialTweetsAVX512 On246810SE +/- 0.02, N = 37.511. (CXX) g++ options: -O3

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: LargeRandomAVX512 On0.35330.70661.05991.41321.7665SE +/- 0.00, N = 31.571. (CXX) g++ options: -O3

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: KostyaAVX512 On1.13852.2773.41554.5545.6925SE +/- 0.01, N = 35.061. (CXX) g++ options: -O3

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: DistinctUserIDAVX512 On246810SE +/- 0.05, N = 38.781. (CXX) g++ options: -O3

OpenBenchmarking.orgGB/s, More Is Bettersimdjson 2.0Throughput Test: TopTweetAVX512 On246810SE +/- 0.05, N = 38.671. (CXX) g++ options: -O3

OpenVKL

OpenVKL is the Intel Open Volume Kernel Library that offers high-performance volume computation kernels and part of the Intel oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems / Sec, More Is BetterOpenVKL 1.3.1Benchmark: vklBenchmark ISPCAVX512 On306090120150SE +/- 1.47, N = 9112MIN: 10 / MAX: 1869

Intel Open Image Denoise

Open Image Denoise is a denoising library for ray-tracing and part of the Intel oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.0Run: RT.hdr_alb_nrm.3840x2160 - Device: CPU-OnlyAVX512 On0.06080.12160.18240.24320.304SE +/- 0.00, N = 30.27

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.0Run: RT.ldr_alb_nrm.3840x2160 - Device: CPU-OnlyAVX512 On0.06080.12160.18240.24320.304SE +/- 0.00, N = 30.27

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.0Run: RTLightmap.hdr.4096x4096 - Device: CPU-OnlyAVX512 On0.02930.05860.08790.11720.1465SE +/- 0.00, N = 30.13

OSPRay

Intel OSPRay is a portable ray-tracing engine for high-performance, high-fidelity scientific visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.12Benchmark: gravity_spheres_volume/dim_512/ao/real_timeAVX512 On0.4840.9681.4521.9362.42SE +/- 0.01201, N = 32.15093

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.12Benchmark: gravity_spheres_volume/dim_512/scivis/real_timeAVX512 On0.47480.94961.42441.89922.374SE +/- 0.01970, N = 32.11043

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.12Benchmark: gravity_spheres_volume/dim_512/pathtracer/real_timeAVX512 On0.59321.18641.77962.37282.966SE +/- 0.01558, N = 32.63644

OpenBenchmarking.orgItems Per Second, More Is BetterOSPRay 2.12Benchmark: particle_volume/pathtracer/real_timeAVX512 On20406080100SE +/- 0.64, N = 3105.36

OSPRay Studio

Intel OSPRay Studio is an open-source, interactive visualization and ray-tracing software package. OSPRay Studio makes use of Intel OSPRay, a portable ray-tracing engine for high-performance, high-fidelity visualizations. OSPRay builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 1080p - Samples Per Pixel: 1 - Renderer: Path TracerAVX512 On8001600240032004000SE +/- 31.26, N = 938691. (CXX) g++ options: -O3 -lm -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 1080p - Samples Per Pixel: 32 - Renderer: Path TracerAVX512 On30K60K90K120K150KSE +/- 680.99, N = 31292961. (CXX) g++ options: -O3 -lm -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 4K - Samples Per Pixel: 1 - Renderer: Path TracerAVX512 On3K6K9K12K15KSE +/- 116.41, N = 3153241. (CXX) g++ options: -O3 -lm -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 1 - Resolution: 4K - Samples Per Pixel: 32 - Renderer: Path TracerAVX512 On110K220K330K440K550KSE +/- 3918.21, N = 35119351. (CXX) g++ options: -O3 -lm -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 1080p - Samples Per Pixel: 1 - Renderer: Path TracerAVX512 On10002000300040005000SE +/- 36.61, N = 348011. (CXX) g++ options: -O3 -lm -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 1080p - Samples Per Pixel: 32 - Renderer: Path TracerAVX512 On30K60K90K120K150KSE +/- 1116.11, N = 31545091. (CXX) g++ options: -O3 -lm -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 4K - Samples Per Pixel: 1 - Renderer: Path TracerAVX512 On4K8K12K16K20KSE +/- 98.15, N = 3187031. (CXX) g++ options: -O3 -lm -ldl

OpenBenchmarking.orgms, Fewer Is BetterOSPRay Studio 0.11Camera: 3 - Resolution: 4K - Samples Per Pixel: 32 - Renderer: Path TracerAVX512 On130K260K390K520K650KSE +/- 6283.42, N = 36148691. (CXX) g++ options: -O3 -lm -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUAVX512 On0.31680.63360.95041.26721.584SE +/- 0.00754, N = 31.40812MIN: 1.111. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUAVX512 On0.3570.7141.0711.4281.785SE +/- 0.01241, N = 91.58666MIN: 1.191. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUAVX512 On0.21090.42180.63270.84361.0545SE +/- 0.001919, N = 40.937257MIN: 0.791. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUAVX512 On9001800270036004500SE +/- 57.14, N = 154281.31MIN: 3574.281. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.1Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUAVX512 On5001000150020002500SE +/- 10.13, N = 32234.12MIN: 2159.11. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Cpuminer-Opt

Cpuminer-Opt is a fork of cpuminer-multi that carries a wide range of CPU performance optimizations for measuring the potential cryptocurrency mining performance of the CPU/processor with a wide variety of cryptocurrencies. The benchmark reports the hash speed for the CPU mining performance for the selected cryptocurrency. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: scryptAVX512 On4080120160200SE +/- 0.52, N = 3175.301. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: Quad SHA-256, PyriteAVX512 On20K40K60K80K100KSE +/- 254.06, N = 3968771. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: Myriad-GroestlAVX512 On6K12K18K24K30KSE +/- 164.15, N = 3282331. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: MagiAVX512 On80160240320400SE +/- 1.51, N = 3369.971. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: Blake-2 SAVX512 On120K240K360K480K600KSE +/- 3930.04, N = 35644301. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: x25xAVX512 On90180270360450SE +/- 1.29, N = 3396.501. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: GarlicoinAVX512 On6001200180024003000SE +/- 22.33, N = 32955.631. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: SkeincoinAVX512 On20K40K60K80K100KSE +/- 607.98, N = 15818591. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenBenchmarking.orgkH/s, More Is BetterCpuminer-Opt 3.20.3Algorithm: LBC, LBRY CreditsAVX512 On10K20K30K40K50KSE +/- 469.41, N = 3445171. (CXX) g++ options: -O2 -lcurl -lz -lpthread -lssl -lcrypto -lgmp

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUAVX512 On0.77851.5572.33553.1143.8925SE +/- 0.08, N = 123.461. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUAVX512 On2004006008001000SE +/- 24.60, N = 121160.98MIN: 969.12 / MAX: 1321.31. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUAVX512 On246810SE +/- 0.05, N = 36.671. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUAVX512 On130260390520650SE +/- 4.29, N = 3599.11MIN: 573.64 / MAX: 654.621. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUAVX512 On2K4K6K8K10KSE +/- 60.96, N = 39779.571. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUAVX512 On0.18230.36460.54690.72920.9115SE +/- 0.01, N = 30.81MIN: 0.43 / MAX: 30.361. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUAVX512 On13002600390052006500SE +/- 34.47, N = 35958.161. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUAVX512 On0.29930.59860.89791.19721.4965SE +/- 0.01, N = 31.33MIN: 0.76 / MAX: 18.191. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUAVX512 On0.42750.8551.28251.712.1375SE +/- 0.02, N = 31.901. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUAVX512 On5001000150020002500SE +/- 24.95, N = 32097.52MIN: 1871.5 / MAX: 2241.541. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUAVX512 On0.42530.85061.27591.70122.1265SE +/- 0.01, N = 31.891. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUAVX512 On5001000150020002500SE +/- 12.82, N = 32108.54MIN: 1830.34 / MAX: 2271.241. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUAVX512 On150300450600750SE +/- 3.04, N = 3678.091. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUAVX512 On3691215SE +/- 0.05, N = 311.76MIN: 8.35 / MAX: 28.931. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUAVX512 On80160240320400SE +/- 2.89, N = 3353.251. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUAVX512 On3691215SE +/- 0.09, N = 311.30MIN: 8.17 / MAX: 35.221. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUAVX512 On90180270360450SE +/- 4.54, N = 3396.561. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUAVX512 On3691215SE +/- 0.11, N = 310.07MIN: 7.2 / MAX: 16.91. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUAVX512 On4080120160200SE +/- 1.28, N = 13185.831. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUAVX512 On510152025SE +/- 0.14, N = 1321.52MIN: 12.55 / MAX: 53.71. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUAVX512 On80160240320400SE +/- 3.04, N = 3359.121. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUAVX512 On3691215SE +/- 0.10, N = 311.12MIN: 7.56 / MAX: 31.911. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUAVX512 On918273645SE +/- 0.12, N = 338.321. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUAVX512 On20406080100SE +/- 0.32, N = 3104.35MIN: 80.05 / MAX: 143.061. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

miniBUDE

MiniBUDE is a mini application for the the core computation of the Bristol University Docking Engine (BUDE). This test profile currently makes use of the OpenMP implementation of miniBUDE for CPU benchmarking. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFInst/s, More Is BetterminiBUDE 20210901Implementation: OpenMP - Input Deck: BM1AVX512 On90180270360450SE +/- 2.08, N = 3408.061. (CC) gcc options: -std=c99 -Ofast -ffast-math -fopenmp -march=native -lm

OpenBenchmarking.orgBillion Interactions/s, More Is BetterminiBUDE 20210901Implementation: OpenMP - Input Deck: BM1AVX512 On48121620SE +/- 0.08, N = 316.321. (CC) gcc options: -std=c99 -Ofast -ffast-math -fopenmp -march=native -lm

SMHasher

SMHasher is a hash function tester supporting various algorithms and able to make use of AVX and other modern CPU instruction set extensions. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMiB/sec, More Is BetterSMHasher 2022-08-22Hash: FarmHash32 x86_64 AVXAVX512 On9K18K27K36K45KSE +/- 43.29, N = 640035.151. (CXX) g++ options: -march=native -O3 -flto=auto -fno-fat-lto-objects

libxsmm

Libxsmm is an open-source library for specialized dense and sparse matrix operations and deep learning primitives. Libxsmm supports making use of Intel AMX, AVX-512, and other modern CPU instruction set capabilities. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGFLOPS/s, More Is Betterlibxsmm 2-1.17-3645M N K: 64AVX512 On4080