new tests jan

AMD Ryzen 7 4700U testing with a LENOVO LNVNB161216 (DTCN18WWV1.04 BIOS) and AMD Renoir 512MB on Ubuntu 22.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2301054-NE-NEWTESTSJ91
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
a
January 04 2023
  1 Hour, 11 Minutes
b
January 05 2023
  1 Hour, 11 Minutes
c
January 05 2023
  1 Hour, 12 Minutes
Invert Behavior (Only Show Selected Data)
  1 Hour, 11 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


new tests janOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 7 4700U @ 2.00GHz (8 Cores)LENOVO LNVNB161216 (DTCN18WWV1.04 BIOS)AMD Renoir/Cezanne16GB512GB SAMSUNG MZALQ512HALU-000L2AMD Renoir 512MB (1600/400MHz)AMD Renoir Radeon HD AudioIntel Wi-Fi 6 AX200Ubuntu 22.045.18.8-051808-generic (x86_64)GNOME Shell 42.2X Server + Wayland4.6 Mesa 22.0.5 (LLVM 13.0.1 DRM 3.46)1.3.204GCC 11.3.0ext41920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionNew Tests Jan BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - Platform Profile: balanced - CPU Microcode: 0x8600102 - ACPI Profile: balanced - Python 3.10.6- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: disabled RSB filling + srbds: Not affected + tsx_async_abort: Not affected

abcResult OverviewPhoronix Test Suite100%101%101%102%103%BRL-CADoneDNNOpenVINOKvazaaruvg266

new tests janbrl-cad: VGR Performance Metricuvg266: Bosphorus 4K - Slowuvg266: Bosphorus 4K - Mediumkvazaar: Bosphorus 4K - Mediumkvazaar: Bosphorus 4K - Slowonednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Training - f32 - CPUonednn: Recurrent Neural Network Inference - u8s8f32 - CPUonednn: Recurrent Neural Network Inference - f32 - CPUonednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUuvg266: Bosphorus 4K - Very Fastopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUuvg266: Bosphorus 4K - Super Fastopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUuvg266: Bosphorus 4K - Ultra Fastkvazaar: Bosphorus 4K - Very Fastkvazaar: Bosphorus 4K - Super Fastuvg266: Bosphorus 1080p - Slowuvg266: Bosphorus 1080p - Mediumkvazaar: Bosphorus 4K - Ultra Fastkvazaar: Bosphorus 1080p - Slowkvazaar: Bosphorus 1080p - Mediumonednn: Deconvolution Batch shapes_1d - f32 - CPUonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUonednn: IP Shapes 1D - f32 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUuvg266: Bosphorus 1080p - Very Fastuvg266: Bosphorus 1080p - Super Fastonednn: Matrix Multiply Batch Shapes Transformer - f32 - CPUonednn: Matrix Multiply Batch Shapes Transformer - u8s8f32 - CPUuvg266: Bosphorus 1080p - Ultra Fastkvazaar: Bosphorus 1080p - Very Fastkvazaar: Bosphorus 1080p - Super Fastonednn: IP Shapes 3D - f32 - CPUonednn: IP Shapes 3D - u8s8f32 - CPUkvazaar: Bosphorus 1080p - Ultra Fastonednn: Convolution Batch Shapes Auto - f32 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUonednn: Deconvolution Batch shapes_3d - f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUonednn: IP Shapes 1D - bf16bf16bf16 - CPUabc790402.783.084.595.416720.666718.946535.754270.534309.94316.034214.140.944065.090.972530.411.588.891932.842.079.2272.114.6820.18197.929.47135.6525.98153.8138.49207.6241.496.522.223531.372.363336.1911.1211.2213.9314.3616.2718.7823.4424.397.584514.1668910.55923.2576241.0342.116.442184.5099550.751.1662.8813.96673.4793783.9833.004730.617910.27545.18882810612.93.14.925.496709.766671.526430.434228.734268.924281.764187.870.953885.831.022436.541.648.941929.352.079.27254.6915.6820.15198.2529.51135.4625.76155.1338.23209.0142.594.022.223539.92.353348.8711.1611.1813.8314.5116.2918.7523.3124.377.506344.1305810.47673.2450441.242.426.421164.4999150.9351.2363.4811.7263.4566686.9432.940430.280310.39375.17662804242.863.114.885.56729.516697.786507.444330.134314.774289.164155.440.954097.160.972536.171.588.961927.862.079.28276.4914.4520.17198.0129.43135.8225.59156.1538.24208.9941.596.282.223528.942.353350.4911.1711.2613.9514.4616.3818.8223.3524.397.500314.1389510.49993.2355441.4542.346.441134.5526751.1351.5963.3211.78153.4669785.233.040430.682210.63295.1863OpenBenchmarking.org

BRL-CAD

BRL-CAD is a cross-platform, open-source solid modeling system with built-in benchmark mode. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgVGR Performance Metric, More Is BetterBRL-CAD 7.34VGR Performance Metricacb20K40K60K80K100K7904080424810611. (CXX) g++ options: -std=c++14 -pipe -fvisibility=hidden -fno-strict-aliasing -fno-common -fexceptions -ftemplate-depth-128 -m64 -ggdb3 -O3 -fipa-pta -fstrength-reduce -finline-functions -flto -ltcl8.6 -lregex_brl -lz_brl -lnetpbm -ldl -lm -ltk8.6

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Slowacb0.65251.3051.95752.613.26252.782.862.90

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Mediumabc0.69981.39962.09942.79923.4993.083.103.11

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Mediumacb1.1072.2143.3214.4285.5354.594.884.921. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Slowabc1.23752.4753.71254.956.18755.415.495.501. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUcab140028004200560070006729.516720.666709.76MIN: 6706.13MIN: 6699.87MIN: 6685.231. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUacb140028004200560070006718.946697.786671.52MIN: 6697.51MIN: 6676.08MIN: 6654.151. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPUacb140028004200560070006535.756507.446430.43MIN: 6490.41MIN: 6454.12MIN: 6374.211. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUcab90018002700360045004330.134270.534228.73MIN: 4299.1MIN: 4249.56MIN: 4206.731. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPUcab90018002700360045004314.774309.904268.92MIN: 4294.78MIN: 4290.44MIN: 4246.651. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUacb90018002700360045004316.034289.164281.76MIN: 4298.56MIN: 4269.17MIN: 4260.681. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUabc90018002700360045004214.144187.874155.44MIN: 3752.16 / MAX: 4441.98MIN: 3773.91 / MAX: 4439.08MIN: 3613.62 / MAX: 4551.41. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUabc0.21380.42760.64140.85521.0690.940.950.951. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUcab90018002700360045004097.164065.093885.83MIN: 3675.56 / MAX: 4343.58MIN: 3620.71 / MAX: 4385.17MIN: 3467.55 / MAX: 4401.51. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUacb0.22950.4590.68850.9181.14750.970.971.021. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUcab50010001500200025002536.172530.412436.54MIN: 2449.59 / MAX: 2652.1MIN: 2449.14 / MAX: 2675.68MIN: 2357.22 / MAX: 2630.771. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUacb0.3690.7381.1071.4761.8451.581.581.641. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Very Fastabc36912158.898.948.96

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUabc4008001200160020001932.841929.351927.86MIN: 1873.21 / MAX: 1964.73MIN: 1860.58 / MAX: 1965.05MIN: 1879.04 / MAX: 1962.331. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUabc0.46580.93161.39741.86322.3292.072.072.071. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Super Fastabc36912159.209.279.28

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUcab60120180240300276.49272.10254.69MIN: 189.01 / MAX: 300.81MIN: 218.74 / MAX: 296.69MIN: 203.79 / MAX: 289.91. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUcab4812162014.4514.6815.681. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUacb51015202520.1820.1720.15MIN: 16.21 / MAX: 32.87MIN: 12.54 / MAX: 39.19MIN: 16.59 / MAX: 34.391. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUacb4080120160200197.90198.01198.251. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUbac71421283529.5129.4729.43MIN: 20.02 / MAX: 45.76MIN: 20.29 / MAX: 55.95MIN: 21.25 / MAX: 56.161. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUbac306090120150135.46135.65135.821. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUabc61218243025.9825.7625.59MIN: 18.73 / MAX: 85.18MIN: 19.71 / MAX: 48.6MIN: 17.81 / MAX: 49.851. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUabc306090120150153.81155.13156.151. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUacb91827364538.4938.2438.23MIN: 28.2 / MAX: 63.19MIN: 28.23 / MAX: 65.71MIN: 28.03 / MAX: 79.551. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUacb50100150200250207.62208.99209.011. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUbca102030405042.541.541.4MIN: 27.02 / MAX: 107.55MIN: 23.58 / MAX: 63.78MIN: 31.23 / MAX: 63.721. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUbca2040608010094.0296.2896.521. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUcba0.49950.9991.49851.9982.49752.222.222.22MIN: 1.65 / MAX: 17.56MIN: 1.62 / MAX: 18.78MIN: 1.51 / MAX: 19.631. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUcab80016002400320040003528.943531.373539.901. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUacb0.5311.0621.5932.1242.6552.362.352.35MIN: 1.6 / MAX: 18.58MIN: 1.66 / MAX: 17.91MIN: 1.49 / MAX: 19.151. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUabc70014002100280035003336.193348.873350.491. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Ultra Fastabc369121511.1211.1611.17

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Very Fastbac369121511.1811.2211.261. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Super Fastbac4812162013.8313.9313.951. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Slowacb4812162014.3614.4614.51

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Mediumabc4812162016.2716.2916.38

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Ultra Fastbac51015202518.7518.7818.821. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Slowbca61218243023.3123.3523.441. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Mediumbac61218243024.3724.3924.391. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPUabc2468107.584517.506347.50031MIN: 6.81MIN: 6.8MIN: 6.751. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUacb0.93761.87522.81283.75044.6884.166894.138954.13058MIN: 3.87MIN: 3.89MIN: 3.881. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 1D - Data Type: f32 - Engine: CPUacb369121510.5610.5010.48MIN: 10.04MIN: 10MIN: 9.91. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUabc0.7331.4662.1992.9323.6653.257623.245043.23554MIN: 3.11MIN: 2.86MIN: 3.071. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Very Fastabc91827364541.0341.2041.45

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Super Fastacb102030405042.1142.3442.42

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Matrix Multiply Batch Shapes Transformer - Data Type: f32 - Engine: CPUacb2468106.442186.441136.42116MIN: 6.3MIN: 6.32MIN: 6.311. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Matrix Multiply Batch Shapes Transformer - Data Type: u8s8f32 - Engine: CPUcab1.02442.04883.07324.09765.1224.552674.509954.49991MIN: 4.2MIN: 4.28MIN: 4.321. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Ultra Fastabc122436486050.7050.9351.13

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Very Fastabc122436486051.1651.2351.591. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Super Fastacb142842567062.8863.3263.481. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 3D - Data Type: f32 - Engine: CPUacb4812162013.9711.7811.73MIN: 13.24MIN: 11.4MIN: 11.341. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPUacb0.78291.56582.34873.13163.91453.479373.466973.45666MIN: 3.39MIN: 3.39MIN: 3.371. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Ultra Fastacb2040608010083.9885.2086.941. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPUcab81624324033.0433.0032.94MIN: 32.7MIN: 32.72MIN: 32.51. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUcab71421283530.6830.6230.28MIN: 29.95MIN: 29.86MIN: 29.581. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPUcba369121510.6310.3910.28MIN: 9.7MIN: 9.22MIN: 8.831. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUacb1.16752.3353.50254.675.83755.188825.186305.17662MIN: 4.7MIN: 4.69MIN: 4.871. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

c: The test run did not produce a result.

Harness: Matrix Multiply Batch Shapes Transformer - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

c: The test run did not produce a result.

Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

c: The test run did not produce a result.

Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

c: The test run did not produce a result.

Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

c: The test run did not produce a result.

Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

c: The test run did not produce a result.

63 Results Shown

BRL-CAD
uvg266:
  Bosphorus 4K - Slow
  Bosphorus 4K - Medium
Kvazaar:
  Bosphorus 4K - Medium
  Bosphorus 4K - Slow
oneDNN:
  Recurrent Neural Network Training - u8s8f32 - CPU
  Recurrent Neural Network Training - bf16bf16bf16 - CPU
  Recurrent Neural Network Training - f32 - CPU
  Recurrent Neural Network Inference - u8s8f32 - CPU
  Recurrent Neural Network Inference - f32 - CPU
  Recurrent Neural Network Inference - bf16bf16bf16 - CPU
OpenVINO:
  Person Detection FP32 - CPU:
    ms
    FPS
  Person Detection FP16 - CPU:
    ms
    FPS
  Face Detection FP16 - CPU:
    ms
    FPS
uvg266
OpenVINO:
  Face Detection FP16-INT8 - CPU:
    ms
    FPS
uvg266
OpenVINO:
  Machine Translation EN To DE FP16 - CPU:
    ms
    FPS
  Person Vehicle Bike Detection FP16 - CPU:
    ms
    FPS
  Vehicle Detection FP16-INT8 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
  Vehicle Detection FP16 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16 - CPU:
    ms
    FPS
uvg266
Kvazaar:
  Bosphorus 4K - Very Fast
  Bosphorus 4K - Super Fast
uvg266:
  Bosphorus 1080p - Slow
  Bosphorus 1080p - Medium
Kvazaar:
  Bosphorus 4K - Ultra Fast
  Bosphorus 1080p - Slow
  Bosphorus 1080p - Medium
oneDNN:
  Deconvolution Batch shapes_1d - f32 - CPU
  Deconvolution Batch shapes_1d - u8s8f32 - CPU
  IP Shapes 1D - f32 - CPU
  IP Shapes 1D - u8s8f32 - CPU
uvg266:
  Bosphorus 1080p - Very Fast
  Bosphorus 1080p - Super Fast
oneDNN:
  Matrix Multiply Batch Shapes Transformer - f32 - CPU
  Matrix Multiply Batch Shapes Transformer - u8s8f32 - CPU
uvg266
Kvazaar:
  Bosphorus 1080p - Very Fast
  Bosphorus 1080p - Super Fast
oneDNN:
  IP Shapes 3D - f32 - CPU
  IP Shapes 3D - u8s8f32 - CPU
Kvazaar
oneDNN:
  Convolution Batch Shapes Auto - f32 - CPU
  Convolution Batch Shapes Auto - u8s8f32 - CPU
  Deconvolution Batch shapes_3d - f32 - CPU
  Deconvolution Batch shapes_3d - u8s8f32 - CPU