janny

AMD Ryzen 5 4500U testing with a LENOVO LNVNB161216 (EECN20WW BIOS) and AMD Renoir 512MB on Pop 22.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2301050-NE-JANNY270419
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
a
January 04 2023
  1 Hour, 14 Minutes
b
January 04 2023
  1 Hour, 13 Minutes
c
January 05 2023
  1 Hour, 13 Minutes
Invert Behavior (Only Show Selected Data)
  1 Hour, 13 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


jannyOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 5 4500U @ 2.38GHz (6 Cores)LENOVO LNVNB161216 (EECN20WW BIOS)AMD Renoir/Cezanne16GB256GB SK hynix HFM256GDHTNI-87A0BAMD Renoir 512MB (1500/400MHz)AMD Renoir Radeon HD AudioRealtek RTL8822CE 802.11ac PCIePop 22.045.17.5-76051705-generic (x86_64)GNOME Shell 42.1X Server 1.21.1.34.6 Mesa 22.0.1 (LLVM 13.0.1 DRM 3.44)1.2.204GCC 11.2.0ext41920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionJanny BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-gBFGDP/gcc-11-11.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-gBFGDP/gcc-11-11.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - Platform Profile: balanced - CPU Microcode: 0x8600102 - ACPI Profile: balanced - Python 3.10.4- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: disabled RSB filling + srbds: Not affected + tsx_async_abort: Not affected

abcResult OverviewPhoronix Test Suite100%101%103%104%Kvazaaruvg266BRL-CADOpenVINOoneDNN

jannyonednn: IP Shapes 3D - f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUkvazaar: Bosphorus 4K - Very Fastkvazaar: Bosphorus 4K - Slowkvazaar: Bosphorus 4K - Super Fastkvazaar: Bosphorus 4K - Mediumuvg266: Bosphorus 1080p - Super Fastuvg266: Bosphorus 1080p - Mediumkvazaar: Bosphorus 1080p - Slowkvazaar: Bosphorus 4K - Ultra Fastuvg266: Bosphorus 4K - Slowonednn: IP Shapes 1D - u8s8f32 - CPUuvg266: Bosphorus 1080p - Slowkvazaar: Bosphorus 1080p - Mediumkvazaar: Bosphorus 1080p - Very Fastuvg266: Bosphorus 4K - Very Fastuvg266: Bosphorus 4K - Super Fastuvg266: Bosphorus 4K - Mediumuvg266: Bosphorus 1080p - Ultra Fastuvg266: Bosphorus 4K - Ultra Fastkvazaar: Bosphorus 1080p - Super Fastuvg266: Bosphorus 1080p - Very Fastonednn: Deconvolution Batch shapes_1d - f32 - CPUkvazaar: Bosphorus 1080p - Ultra Fastopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUbrl-cad: VGR Performance Metricopenvino: Face Detection FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Person Detection FP32 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16 - CPUonednn: Deconvolution Batch shapes_3d - f32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUonednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUonednn: Recurrent Neural Network Inference - f32 - CPUonednn: IP Shapes 1D - f32 - CPUonednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUonednn: Convolution Batch Shapes Auto - f32 - CPUonednn: IP Shapes 3D - u8s8f32 - CPUonednn: Recurrent Neural Network Training - f32 - CPUonednn: Matrix Multiply Batch Shapes Transformer - f32 - CPUonednn: Matrix Multiply Batch Shapes Transformer - u8s8f32 - CPUonednn: Recurrent Neural Network Inference - u8s8f32 - CPUonednn: IP Shapes 1D - bf16bf16bf16 - CPUabc15.40237.865829.643.9511.883.9836.4814.4121.5516.272.363.9594312.9122.2344.867.547.782.6343.899.4555.0235.59.8658574.941.342235.065.920433.59178.461686.132894.132.04679341.771.923065.263576.33122.8931.6824.3994.5911.91760.8322.640.84132.43532.0417.24173.827689.977716.5128.998913.37224.14675.6310.47124671.9132.1874.091387740.026.308534.50174652.9914.38278.181269.743.9411.973.9836.2214.4921.5716.232.373.9395312.9722.3344.967.597.792.6443.729.4854.835.5610.223274.281.332244.95.9092533.4179.451684.972846.392.07671161.781.943038.983586.38122.9731.9224.3793.8912.20510.8322.620.84132.53551.8617.21174.057593.177641.2128.638313.52221.684643.9110.55364639.2331.95284.065397708.696.319294.509164655.0113.69998.5163310.324.212.664.2138.3115.2322.7517.132.493.7534513.623.4147.217.938.172.7645.829.957.1637.029.8286177.251.382164.035.724532.59183.931636.562932.222.01690381.821.893117.153499.22125.931.1623.8196.1711.98610.8522.110.86135.553473.0216.89177.47563.317602.9828.797713.52221.664630.2310.51094637.7831.97884.074787698.046.298814.499614647.37OpenBenchmarking.org

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 3D - Data Type: f32 - Engine: CPUcba4812162013.7014.3815.40MIN: 13.18MIN: 13.99MIN: 13.921. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUabc2468107.865828.181268.51633MIN: 6.74MIN: 7.01MIN: 6.871. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Very Fastcba369121510.329.749.641. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Slowcab0.9451.892.8353.784.7254.203.953.941. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Super Fastcba369121512.6611.9711.881. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Mediumcba0.94731.89462.84193.78924.73654.213.983.981. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Super Fastcab91827364538.3136.4836.22

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Mediumcba4812162015.2314.4914.41

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Slowcba51015202522.7521.5721.551. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Ultra Fastcab4812162017.1316.2716.231. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Slowcba0.56031.12061.68092.24122.80152.492.372.36

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUcba0.89091.78182.67273.56364.45453.753453.939533.95943MIN: 3.58MIN: 3.72MIN: 3.721. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Slowcba369121513.6012.9712.91

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Mediumcba61218243023.4122.3322.231. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Very Fastcba112233445547.2144.9644.861. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Very Fastcba2468107.937.597.54

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Super Fastcba2468108.177.797.78

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Mediumcba0.6211.2421.8632.4843.1052.762.642.63

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Ultra Fastcab102030405045.8243.8943.72

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Ultra Fastcba36912159.909.489.45

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Super Fastcab132639526557.1655.0254.801. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Very Fastcba91827364537.0235.5635.50

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPUcab36912159.828619.8658510.22320MIN: 8.3MIN: 8.73MIN: 8.011. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Ultra Fastcab2040608010077.2574.9474.281. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUcab0.31050.6210.93151.2421.55251.381.341.331. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUcab50010001500200025002164.032235.062244.90MIN: 2038.33 / MAX: 2224.84MIN: 2115.12 / MAX: 2290.33MIN: 2134.47 / MAX: 2290.731. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUcba1.33212.66423.99635.32846.66055.724505.909255.92040MIN: 5.22MIN: 5.53MIN: 5.551. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUcba81624324032.5933.4033.59MIN: 28.95 / MAX: 72.98MIN: 28.91 / MAX: 65.17MIN: 28.91 / MAX: 72.351. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUcba4080120160200183.93179.45178.461. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUcba4008001200160020001636.561684.971686.13MIN: 1530.31 / MAX: 1664.97MIN: 1597.04 / MAX: 1709.04MIN: 1576.5 / MAX: 1709.881. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUcab60012001800240030002932.222894.132846.391. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUcab0.46580.93161.39741.86322.3292.012.042.07MIN: 1.5 / MAX: 13.99MIN: 1.38 / MAX: 10.54MIN: 1.47 / MAX: 15.151. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

BRL-CAD

BRL-CAD is a cross-platform, open-source solid modeling system with built-in benchmark mode. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgVGR Performance Metric, More Is BetterBRL-CAD 7.34VGR Performance Metriccab15K30K45K60K75K6903867934671161. (CXX) g++ options: -std=c++14 -pipe -fvisibility=hidden -fno-strict-aliasing -fno-common -fexceptions -ftemplate-depth-128 -m64 -ggdb3 -O3 -fipa-pta -fstrength-reduce -finline-functions -flto -ltcl8.6 -lregex_brl -lz_brl -lnetpbm -ldl -lm -ltk8.6

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUcba0.40950.8191.22851.6382.04751.821.781.771. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUcab0.43650.8731.30951.7462.18251.891.921.94MIN: 1.35 / MAX: 13.52MIN: 1.34 / MAX: 13.75MIN: 1.44 / MAX: 17.181. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUcab70014002100280035003117.153065.263038.981. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUcab80016002400320040003499.223576.333586.38MIN: 3245.86 / MAX: 3693.88MIN: 3099.02 / MAX: 3726.25MIN: 3137.28 / MAX: 3764.341. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUcba306090120150125.90122.97122.891. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUcab71421283531.1631.6831.92MIN: 23.9 / MAX: 51MIN: 25.08 / MAX: 50.29MIN: 25.75 / MAX: 54.581. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUcba61218243023.8124.3724.39MIN: 19.98 / MAX: 52.9MIN: 19.65 / MAX: 64.9MIN: 19.39 / MAX: 54.371. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUcab2040608010096.1794.5993.891. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPUacb369121511.9211.9912.21MIN: 10.9MIN: 10.8MIN: 10.81. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUcba0.19130.38260.57390.76520.95650.850.830.831. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUcba51015202522.1122.6222.64MIN: 17.71 / MAX: 44.4MIN: 18 / MAX: 44.52MIN: 18.28 / MAX: 46.041. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUcba0.19350.3870.58050.7740.96750.860.840.841. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUcba306090120150135.55132.50132.401. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUcab80016002400320040003473.023532.043551.86MIN: 3142.99 / MAX: 3579.5MIN: 3052.82 / MAX: 3839.94MIN: 3162.21 / MAX: 3802.621. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUcba4812162016.8917.2117.24MIN: 13.78 / MAX: 39.71MIN: 14.64 / MAX: 44.81MIN: 13.6 / MAX: 30.841. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUcba4080120160200177.40174.05173.821. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUcba160032004800640080007563.317593.177689.97MIN: 7484.18MIN: 7506.18MIN: 7627.531. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUcba170034005100680085007602.987641.217716.51MIN: 7526.95MIN: 7531.8MIN: 7641.461. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUbca71421283528.6428.8029.00MIN: 28.39MIN: 28.35MIN: 28.661. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUcba369121513.5213.5213.371. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUcba50100150200250221.66221.68224.10MIN: 172.88 / MAX: 261.39MIN: 189.22 / MAX: 248.87MIN: 175.51 / MAX: 252.361. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPUcba100020003000400050004630.234643.914675.63MIN: 4580.66MIN: 4557.8MIN: 4618.941. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 1D - Data Type: f32 - Engine: CPUacb369121510.4710.5110.55MIN: 10.08MIN: 10.04MIN: 9.971. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUcba100020003000400050004637.784639.234671.91MIN: 4584.06MIN: 4559.15MIN: 4612.131. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPUbca71421283531.9531.9832.19MIN: 31.56MIN: 31.63MIN: 31.631. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPUbca0.92061.84122.76183.68244.6034.065394.074784.09138MIN: 3.96MIN: 3.99MIN: 4.011. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPUcba170034005100680085007698.047708.697740.02MIN: 7530.1MIN: 7510.76MIN: 7668.281. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Matrix Multiply Batch Shapes Transformer - Data Type: f32 - Engine: CPUcab2468106.298816.308536.31929MIN: 6.15MIN: 6.14MIN: 6.161. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Matrix Multiply Batch Shapes Transformer - Data Type: u8s8f32 - Engine: CPUcab1.01462.02923.04384.05845.0734.499614.501704.50916MIN: 4.16MIN: 4.16MIN: 4.231. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUcab100020003000400050004647.374652.994655.01MIN: 4576.71MIN: 4586.15MIN: 4568.511. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Harness: Matrix Multiply Batch Shapes Transformer - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

c: The test run did not produce a result.

Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

c: The test run did not produce a result.

Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

c: The test run did not produce a result.

Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

c: The test run did not produce a result.

Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

c: The test run did not produce a result.

Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPU

a: The test run did not produce a result.

b: The test run did not produce a result.

c: The test run did not produce a result.

63 Results Shown

oneDNN:
  IP Shapes 3D - f32 - CPU
  Deconvolution Batch shapes_3d - u8s8f32 - CPU
Kvazaar:
  Bosphorus 4K - Very Fast
  Bosphorus 4K - Slow
  Bosphorus 4K - Super Fast
  Bosphorus 4K - Medium
uvg266:
  Bosphorus 1080p - Super Fast
  Bosphorus 1080p - Medium
Kvazaar:
  Bosphorus 1080p - Slow
  Bosphorus 4K - Ultra Fast
uvg266
oneDNN
uvg266
Kvazaar:
  Bosphorus 1080p - Medium
  Bosphorus 1080p - Very Fast
uvg266:
  Bosphorus 4K - Very Fast
  Bosphorus 4K - Super Fast
  Bosphorus 4K - Medium
  Bosphorus 1080p - Ultra Fast
  Bosphorus 4K - Ultra Fast
Kvazaar
uvg266
oneDNN
Kvazaar
OpenVINO:
  Face Detection FP16 - CPU:
    FPS
    ms
oneDNN
OpenVINO:
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
  Face Detection FP16-INT8 - CPU:
    ms
  Age Gender Recognition Retail 0013 FP16 - CPU:
    FPS
    ms
BRL-CAD
OpenVINO:
  Face Detection FP16-INT8 - CPU
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU
  Person Detection FP32 - CPU
  Vehicle Detection FP16-INT8 - CPU
  Vehicle Detection FP16 - CPU
  Vehicle Detection FP16-INT8 - CPU
  Vehicle Detection FP16 - CPU
oneDNN
OpenVINO:
  Person Detection FP32 - CPU
  Weld Porosity Detection FP16 - CPU
  Person Detection FP16 - CPU
  Weld Porosity Detection FP16 - CPU
  Person Detection FP16 - CPU
  Person Vehicle Bike Detection FP16 - CPU
  Person Vehicle Bike Detection FP16 - CPU
oneDNN:
  Recurrent Neural Network Training - u8s8f32 - CPU
  Recurrent Neural Network Training - bf16bf16bf16 - CPU
  Convolution Batch Shapes Auto - u8s8f32 - CPU
OpenVINO:
  Machine Translation EN To DE FP16 - CPU:
    FPS
    ms
oneDNN:
  Recurrent Neural Network Inference - f32 - CPU
  IP Shapes 1D - f32 - CPU
  Recurrent Neural Network Inference - bf16bf16bf16 - CPU
  Convolution Batch Shapes Auto - f32 - CPU
  IP Shapes 3D - u8s8f32 - CPU
  Recurrent Neural Network Training - f32 - CPU
  Matrix Multiply Batch Shapes Transformer - f32 - CPU
  Matrix Multiply Batch Shapes Transformer - u8s8f32 - CPU
  Recurrent Neural Network Inference - u8s8f32 - CPU