OpenFOAM is the leading free, open-source software for computational fluid dynamics (CFD). This test profile currently uses the drivaerFastback test case for analyzing automotive aerodynamics or alternatively the older motorBike input.
To run this test with the Phoronix Test Suite, the basic command is: phoronix-test-suite benchmark openfoam.
* Uploading of benchmark result data to OpenBenchmarking.org is always optional (opt-in) via the Phoronix Test Suite for users wishing to share their results publicly. ** Data based on those opting to upload their test results to OpenBenchmarking.org and users enabling the opt-in anonymous statistics reporting while running benchmarks from an Internet-connected platform. *** Test profile page view reporting began March 2021. Data updated weekly as of 18 November 2024.
pts/openfoam-1.1.2 [View Source] Thu, 30 Jun 2022 09:29:01 GMT Add drivaerFastback, Large Mesh Size for large servers as on EPYC finding medium mesh size runs rather quickly still.
Input: drivaerFastback, Small Mesh Size - Execution Time
OpenBenchmarking.org metrics for this test profile configuration based on 1,548 public results since 17 September 2022 with the latest data as of 15 November 2024.
Below is an overview of the generalized performance for components where there is sufficient statistically significant data based upon user-uploaded results. It is important to keep in mind particularly in the Linux/open-source space there can be vastly different OS configurations, with this overview intended to offer just general guidance as to the performance expectations.
Based on OpenBenchmarking.org data, the selected test / test configuration (OpenFOAM 10 - Input: drivaerFastback, Small Mesh Size - Execution Time) has an average run-time of 4 minutes. By default this test profile is set to run at least 1 times but may increase if the standard deviation exceeds pre-defined defaults or other calculations deem additional runs necessary for greater statistical accuracy of the result.
Does It Scale Well With Increasing Cores?
Yes, based on the automated analysis of the collected public benchmark data, this test / test settings does generally scale well with increasing CPU core counts. Data based on publicly available results for this test / test settings, separated by vendor, result divided by the reference CPU clock speed, grouped by matching physical CPU core count, and normalized against the smallest core count tested from each vendor for each CPU having a sufficient number of test samples and statistically significant data.
Notable Instruction Set Usage
Notable instruction set extensions supported by this test, based on an automatic analysis by the Phoronix Test Suite / OpenBenchmarking.org analytics engine.
This test profile binary relies on the shared libraries libmomentumTransportModels.so, libincompressibleMomentumTransportModels.so, libincompressibleTransportModels.so, libfiniteVolume.so, libmeshTools.so, libfvOptions.so, libsampling.so, libOpenFOAM.so, libm.so.6, libc.so.6, libPstream.so.
Tested CPU Architectures
This benchmark has been successfully tested on the below mentioned architectures. The CPU architectures listed is where successful OpenBenchmarking.org result uploads occurred, namely for helping to determine if a given test is compatible with various alternative CPU architectures.