This is a benchmark of the Bullet Physics Engine.
To run this test with the Phoronix Test Suite, the basic command is: phoronix-test-suite benchmark bullet.
OpenBenchmarking.org metrics for this test profile configuration based on 1,639 public results since 23 January 2013 with the latest data as of 27 November 2024.
Below is an overview of the generalized performance for components where there is sufficient statistically significant data based upon user-uploaded results. It is important to keep in mind particularly in the Linux/open-source space there can be vastly different OS configurations, with this overview intended to offer just general guidance as to the performance expectations.
Based on OpenBenchmarking.org data, the selected test / test configuration (Bullet Physics Engine 2.81 - Test: 1000 Stack) has an average run-time of 2 minutes. By default this test profile is set to run at least 3 times but may increase if the standard deviation exceeds pre-defined defaults or other calculations deem additional runs necessary for greater statistical accuracy of the result.
Based on public OpenBenchmarking.org results, the selected test / test configuration has an average standard deviation of 0.4%.
No, based on the automated analysis of the collected public benchmark data, this test / test settings does not generally scale well with increasing CPU core counts. Data based on publicly available results for this test / test settings, separated by vendor, result divided by the reference CPU clock speed, grouped by matching physical CPU core count, and normalized against the smallest core count tested from each vendor for each CPU having a sufficient number of test samples and statistically significant data.
Notable instruction set extensions supported by this test, based on an automatic analysis by the Phoronix Test Suite / OpenBenchmarking.org analytics engine.
This test profile binary relies on the shared libraries libm.so.6, libc.so.6.
This benchmark has been successfully tested on the below mentioned architectures. The CPU architectures listed is where successful OpenBenchmarking.org result uploads occurred, namely for helping to determine if a given test is compatible with various alternative CPU architectures.
1 System - 7 Benchmark Results |
AMD Ryzen 9 7950X 16-Core - ASRock X670E Steel Legend - AMD Device 14d8 Ubuntu 24.04 - 6.8.0-49-generic - GNOME Shell 46.0 |
2 Systems - 7 Benchmark Results |
AMD EPYC 9554P 64-Core - Dell 0H7W4K - AMD Device 14a4 CentOS 9 - 5.14.0-503.el9.x86_64 - X Server |
1 System - 7 Benchmark Results |
AMD EPYC 9554P 64-Core - Dell 0H7W4K - AMD Device 14a4 CentOS 9 - 5.14.0-503.el9.x86_64 - X Server |
2 Systems - 7 Benchmark Results |
AMD EPYC 9554P 64-Core - Dell 0H7W4K - AMD Device 14a4 CentOS 9 - 5.14.0-503.el9.x86_64 - X Server |
2 Systems - 7 Benchmark Results |
AMD EPYC 9554P 64-Core - Dell 0H7W4K - AMD Device 14a4 CentOS 9 - 5.14.0-503.el9.x86_64 - X Server |
1 System - 7 Benchmark Results |
AMD EPYC 9554P 64-Core - Dell 0H7W4K - AMD Device 14a4 CentOS 9 - 5.14.0-503.el9.x86_64 - X Server |
1 System - 7 Benchmark Results |
AMD EPYC 9554P 64-Core - Dell 0H7W4K - AMD Device 14a4 CentOS 9 - 5.14.0-503.el9.x86_64 - X Server |
1 System - 8 Benchmark Results |
AMD Ryzen 7 7800X3D 8-Core - ASUS ROG STRIX B650-A GAMING WIFI - AMD Device 14d8 Pop 22.04 - 6.9.3-76060903-generic - GNOME Shell 42.9 |
1 System - 7 Benchmark Results |
AMD Ryzen Threadripper 7970X 32-Cores - ASRock TRX50 WS - AMD Device 14a4 Arch rolling - 6.10.3-arch1-2 - KDE Plasma 6.1.3 |