pyt

AMD EPYC 9654 96-Core testing with a AMD Titanite_4G (RTI1007B BIOS) and ASPEED on Ubuntu 23.10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2311183-NE-PYT49584300
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Additional Graphs

Show Perf Per Core/Thread Calculation Graphs Where Applicable

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
November 18 2023
  1 Hour, 10 Minutes
b
November 18 2023
  42 Minutes
c
November 18 2023
  28 Minutes
d
November 18 2023
  42 Minutes
Invert Hiding All Results Option
  46 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


pytProcessorMotherboardChipsetMemoryDiskGraphicsNetworkOSKernelDesktopDisplay ServerCompilerFile-SystemScreen Resolutionabcd2 x AMD EPYC 9654 96-Core @ 2.40GHz (192 Cores / 384 Threads)AMD Titanite_4G (RTI1007B BIOS)AMD Device 14a41520GB3201GB Micron_7450_MTFDKCC3T2TFSASPEEDBroadcom NetXtreme BCM5720 PCIeUbuntu 23.106.6.0-rc5-phx-patched (x86_64)GNOME Shell 45.0X Server 1.21.1.7GCC 13.2.0ext41920x1200AMD EPYC 9654 96-Core @ 2.40GHz (96 Cores / 192 Threads)768GBOpenBenchmarking.orgKernel Details- Transparent Huge Pages: madviseProcessor Details- Scaling Governor: acpi-cpufreq performance (Boost: Enabled) - CPU Microcode: 0xa10113ePython Details- Python 3.11.6Security Details- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

abcdLogarithmic Result OverviewPhoronix Test SuitePyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchPyTorchCPU - 16 - Efficientnet_v2_lCPU - 32 - Efficientnet_v2_lCPU - 1 - ResNet-50CPU - 16 - ResNet-50CPU - 64 - ResNet-50CPU - 256 - ResNet-50CPU - 512 - ResNet-152CPU - 512 - ResNet-50CPU - 64 - ResNet-152CPU - 256 - ResNet-152CPU - 1 - ResNet-152CPU - 32 - ResNet-50CPU - 16 - ResNet-152CPU - 32 - ResNet-152CPU - 1 - Efficientnet_v2_l

pytpytorch: CPU - 16 - Efficientnet_v2_lpytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 1 - ResNet-50pytorch: CPU - 16 - ResNet-50pytorch: CPU - 64 - ResNet-50pytorch: CPU - 256 - ResNet-50pytorch: CPU - 512 - ResNet-152pytorch: CPU - 512 - ResNet-50pytorch: CPU - 64 - ResNet-152pytorch: CPU - 256 - ResNet-152pytorch: CPU - 1 - ResNet-152pytorch: CPU - 32 - ResNet-50pytorch: CPU - 16 - ResNet-152pytorch: CPU - 32 - ResNet-152pytorch: CPU - 1 - Efficientnet_v2_lpytorch: CPU - 256 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lpytorch: CPU - 512 - Efficientnet_v2_labcd1.291.2921.9120.2220.4620.558.7121.378.948.9710.2821.779.249.346.756.446.3646.6139.8740.0639.4216.4839.6916.4416.4518.9239.8216.3816.1210.896.346.416.406.376.3846.7139.8039.9639.7516.4639.9315.8416.1417.8339.8316.0816.0511.116.396.3646.4540.3839.7740.2315.8939.3516.5916.5718.6539.5416.0115.8910.966.406.376.38OpenBenchmarking.org

PyTorch

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_labcd2468101.296.446.376.39MIN: 0.62 / MAX: 2.39MIN: 5.99 / MAX: 6.57MIN: 5.95 / MAX: 6.52MIN: 4.97 / MAX: 6.52

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_labcd2468101.296.366.386.36MIN: 0.48 / MAX: 2.37MIN: 5.91 / MAX: 6.47MIN: 5.17 / MAX: 6.51MIN: 5.94 / MAX: 6.48

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-50abcd112233445521.9146.6146.7146.45MIN: 12.38 / MAX: 23.84MIN: 41.78 / MAX: 47.84MIN: 45.82 / MAX: 47.64MIN: 45.7 / MAX: 47.37

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-50abcd91827364520.2239.8739.8040.38MIN: 11.34 / MAX: 20.76MIN: 38.37 / MAX: 40.84MIN: 38.39 / MAX: 40.71MIN: 39.31 / MAX: 41.34

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: ResNet-50abcd91827364520.4640.0639.9639.77MIN: 12.21 / MAX: 21.36MIN: 39.17 / MAX: 40.95MIN: 38.88 / MAX: 40.88MIN: 38.66 / MAX: 40.81

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-50abcd91827364520.5539.4239.7540.23MIN: 12.2 / MAX: 21.39MIN: 38.56 / MAX: 40.13MIN: 38.53 / MAX: 40.65MIN: 39.26 / MAX: 41.13

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: ResNet-152abcd481216208.7116.4816.4615.89MIN: 8.58 / MAX: 8.83MIN: 16.26 / MAX: 16.64MIN: 16.27 / MAX: 16.61MIN: 15.72 / MAX: 16.05

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: ResNet-50abcd91827364521.3739.6939.9339.35MIN: 20.51 / MAX: 21.86MIN: 38.5 / MAX: 40.43MIN: 38.89 / MAX: 40.82MIN: 38.36 / MAX: 40.29

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: ResNet-152abcd481216208.9416.4415.8416.59MIN: 4.61 / MAX: 9.21MIN: 16.27 / MAX: 16.62MIN: 15.67 / MAX: 16MIN: 16.4 / MAX: 16.74

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-152abcd481216208.9716.4516.1416.57MIN: 5.15 / MAX: 9.12MIN: 16.26 / MAX: 16.62MIN: 15.96 / MAX: 16.34MIN: 16.4 / MAX: 16.73

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-152abcd51015202510.2818.9217.8318.65MIN: 5.05 / MAX: 10.64MIN: 10.58 / MAX: 19.1MIN: 17.67 / MAX: 17.98MIN: 18.45 / MAX: 18.9

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: ResNet-50abcd91827364521.7739.8239.8339.54MIN: 18.59 / MAX: 22.39MIN: 38.85 / MAX: 40.77MIN: 39.1 / MAX: 40.71MIN: 38.66 / MAX: 40.21

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-152abcd481216209.2416.3816.0816.01MIN: 6.47 / MAX: 9.41MIN: 16.2 / MAX: 16.56MIN: 15.91 / MAX: 16.23MIN: 15.87 / MAX: 16.17

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: ResNet-152abcd481216209.3416.1216.0515.89MIN: 5.1 / MAX: 9.48MIN: 15.97 / MAX: 16.29MIN: 15.91 / MAX: 16.29MIN: 15.7 / MAX: 16.11

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_labcd36912156.7510.8911.1110.96MIN: 4.17 / MAX: 6.89MIN: 10.79 / MAX: 10.98MIN: 11.02 / MAX: 11.2MIN: 10.88 / MAX: 11.02

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_lbd2468106.346.40MIN: 5.84 / MAX: 6.47MIN: 6 / MAX: 6.53

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_lbd2468106.416.37MIN: 5.98 / MAX: 6.55MIN: 5.86 / MAX: 6.49

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_lbd2468106.406.38MIN: 5.88 / MAX: 6.53MIN: 5.97 / MAX: 6.5