xeon platinum 8380 january

2 x Intel Xeon Platinum 8380 testing with a Intel M50CYP2SB2U (SE5C6200.86B.0022.D08.2103221623 BIOS) and ASPEED on Ubuntu 22.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2301068-NE-XEONPLATI59
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts

Limit displaying results to tests within:

CPU Massive 4 Tests
Creator Workloads 6 Tests
Encoding 2 Tests
HPC - High Performance Computing 3 Tests
Machine Learning 3 Tests
Multi-Core 6 Tests
Intel oneAPI 3 Tests
Python Tests 2 Tests
Server CPU Tests 3 Tests
Video Encoding 2 Tests

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Geometric Means Per-Suite/Category
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
a
January 05 2023
  3 Hours, 41 Minutes
b
January 05 2023
  2 Hours, 11 Minutes
c
January 06 2023
  2 Hours, 11 Minutes
Invert Hiding All Results Option
  2 Hours, 41 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


xeon platinum 8380 januaryOpenBenchmarking.orgPhoronix Test Suite2 x Intel Xeon Platinum 8380 @ 3.40GHz (80 Cores / 160 Threads)Intel M50CYP2SB2U (SE5C6200.86B.0022.D08.2103221623 BIOS)Intel Device 0998512GB3841GB Micron_9300_MTFDHAL3T8TDPASPEEDVE2282 x Intel X710 for 10GBASE-T + 2 x Intel E810-C for QSFPUbuntu 22.045.15.0-47-generic (x86_64)GNOME Shell 42.4X Server 1.21.1.31.2.204GCC 11.2.0ext41920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsMonitorNetworkOSKernelDesktopDisplay ServerVulkanCompilerFile-SystemScreen ResolutionXeon Platinum 8380 January BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-gBFGDP/gcc-11-11.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-gBFGDP/gcc-11-11.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_pstate performance (EPP: performance) - CPU Microcode: 0xd000375 - Python 3.10.6- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Mitigation of Clear buffers; SMT vulnerable + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling + srbds: Not affected + tsx_async_abort: Not affected

abcResult OverviewPhoronix Test Suite100%101%102%104%105%oneDNNTimed Linux Kernel CompilationKvazaarCockroachDBBRL-CADNumenta Anomaly Benchmarkuvg266OpenVKLOpenVINO

xeon platinum 8380 januarybrl-cad: VGR Performance Metricopenvkl: vklBenchmark Scalaropenvkl: vklBenchmark ISPCbuild-linux-kernel: allmodconfigcockroach: KV, 10% Reads - 256cockroach: KV, 10% Reads - 128cockroach: MoVR - 256cockroach: MoVR - 512cockroach: MoVR - 1024cockroach: MoVR - 128onednn: Recurrent Neural Network Training - f32 - CPUonednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Inference - f32 - CPUonednn: Recurrent Neural Network Inference - u8s8f32 - CPUnumenta-nab: KNN CADcockroach: KV, 50% Reads - 1024cockroach: KV, 60% Reads - 1024cockroach: KV, 10% Reads - 1024cockroach: KV, 95% Reads - 1024cockroach: KV, 10% Reads - 512cockroach: KV, 60% Reads - 512cockroach: KV, 50% Reads - 512cockroach: KV, 95% Reads - 512cockroach: KV, 50% Reads - 256cockroach: KV, 60% Reads - 256cockroach: KV, 95% Reads - 256cockroach: KV, 60% Reads - 128cockroach: KV, 50% Reads - 128cockroach: KV, 95% Reads - 128numenta-nab: Earthgecko Skylineopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUuvg266: Bosphorus 4K - Slowopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUuvg266: Bosphorus 4K - Mediumkvazaar: Bosphorus 4K - Slowkvazaar: Bosphorus 4K - Mediumbuild-linux-kernel: defconfignumenta-nab: Contextual Anomaly Detector OSEonednn: Deconvolution Batch shapes_1d - f32 - CPUonednn: Deconvolution Batch shapes_1d - bf16bf16bf16 - CPUonednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUonednn: IP Shapes 1D - f32 - CPUonednn: IP Shapes 1D - bf16bf16bf16 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUuvg266: Bosphorus 4K - Very Fastnumenta-nab: Bayesian Changepointuvg266: Bosphorus 4K - Ultra Fastuvg266: Bosphorus 4K - Super Fastkvazaar: Bosphorus 4K - Very Fastkvazaar: Bosphorus 4K - Super Fastkvazaar: Bosphorus 4K - Ultra Fastonednn: Matrix Multiply Batch Shapes Transformer - bf16bf16bf16 - CPUonednn: Matrix Multiply Batch Shapes Transformer - f32 - CPUonednn: Matrix Multiply Batch Shapes Transformer - u8s8f32 - CPUuvg266: Bosphorus 1080p - Slowuvg266: Bosphorus 1080p - Mediumonednn: IP Shapes 3D - f32 - CPUonednn: IP Shapes 3D - bf16bf16bf16 - CPUonednn: IP Shapes 3D - u8s8f32 - CPUnumenta-nab: Relative Entropykvazaar: Bosphorus 1080p - Slowkvazaar: Bosphorus 1080p - Mediumonednn: Convolution Batch Shapes Auto - f32 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUonednn: Convolution Batch Shapes Auto - bf16bf16bf16 - CPUuvg266: Bosphorus 1080p - Very Fastuvg266: Bosphorus 1080p - Super Fastuvg266: Bosphorus 1080p - Ultra Fastnumenta-nab: Windowed Gaussiankvazaar: Bosphorus 1080p - Very Fastkvazaar: Bosphorus 1080p - Super Fastkvazaar: Bosphorus 1080p - Ultra Fastonednn: Deconvolution Batch shapes_3d - bf16bf16bf16 - CPUonednn: Deconvolution Batch shapes_3d - f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUabc2460090438921238.74285831.081692.1978.31004.6995.01005.3755.374755.612736.729504.670485.542516.697117.92495936.8102024.575439.3114587.781929.6103167.1102949.9124770.8103724.9104879109396.896257.5101191.6115235.981.0333007.8813.092942.9713.421726.7522.9514.82429.2592.9518.52157.13153.57259.7438.11047.879.164354.1433.522379.629.018849.011.4151056.581.5447089.4916.7120.0620.6526.78442.1796.945063.730780.3708791.406534.998222.8080841.7624.12842.9643.0944.1646.8148.6411.556030.2321920.17064150.5655.892.026412.786570.56639512.94983.3685.781.433781.158702.08794147.71148.14151.356.417177.06183.22189.933.593520.8756250.2017352441642441915240.39183364.979813.8946.31051.3980.11034.4812.452835.126713.105484.337482.719496.945111.16487162.189996.280303.310936378488.4102734.790463.4130818.895363.3112692.413257697956.191347.712891483.182999.5713.152944.0213.41729.6922.9814.82429.8992.8318.522154.54148.47268.9438.131047.19.144366.133.572376.329.028843.721.4151048.881.5347321.7916.7119.9420.6527.68342.6856.949823.752920.3699151.316745.503653.1320641.6923.82741.7243.6744.1647.347.9812.16560.2357620.16732650.6455.722.051872.909670.69743513.10681.9985.351.407691.160662.09255145.05146.01152.756.264179.03176.22183.23.619880.8667280.1977082462204441922239.63287542.978523.6956.1948.9982.21036736.401766.996716.123463.131499.922474.179116.75591821.197814.881526.5126309.982853105826.598677.7104051.6108532.696996.9114216.8103471.9103180.8129287.881.0823005.1913.142977.6413.211726.3122.9514.78429.4792.9318.52156.73147.66270.538.081048.49.154360.733.52380.578.998870.431.4151211.851.5347285.9216.7120.0620.5727.77743.5077.071353.731480.3741841.13245.767842.1350942.0423.82343.3243.6344.1947.5849.698.110910.23850.17018750.3255.52.181652.790060.63430312.97583.4984.561.406011.161322.10535146.66148.56149.166.197180.91195.56181.683.585340.8703420.196388OpenBenchmarking.org

BRL-CAD

BRL-CAD is a cross-platform, open-source solid modeling system with built-in benchmark mode. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgVGR Performance Metric, More Is BetterBRL-CAD 7.34VGR Performance Metricabc500K1000K1500K2000K2500K2460090244164224622041. (CXX) g++ options: -std=c++14 -pipe -fvisibility=hidden -fno-strict-aliasing -fno-common -fexceptions -ftemplate-depth-128 -m64 -ggdb3 -O3 -fipa-pta -fstrength-reduce -finline-functions -flto -ltcl8.6 -lregex_brl -lz_brl -lnetpbm -ldl -lm -ltk8.6

OpenVKL

OpenVKL is the Intel Open Volume Kernel Library that offers high-performance volume computation kernels and part of the Intel oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgItems / Sec, More Is BetterOpenVKL 1.3.1Benchmark: vklBenchmark Scalarabc100200300400500SE +/- 0.58, N = 3438441441MIN: 53 / MAX: 5407MIN: 54 / MAX: 5443MIN: 54 / MAX: 5447

OpenBenchmarking.orgItems / Sec, More Is BetterOpenVKL 1.3.1Benchmark: vklBenchmark ISPCabc2004006008001000SE +/- 3.06, N = 3921915922MIN: 140 / MAX: 7539MIN: 141 / MAX: 7348MIN: 141 / MAX: 7376

Timed Linux Kernel Compilation

This test times how long it takes to build the Linux kernel in a default configuration (defconfig) for the architecture being tested or alternatively an allmodconfig for building all possible kernel modules for the build. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterTimed Linux Kernel Compilation 6.1Build: allmodconfigabc50100150200250SE +/- 0.38, N = 3238.74240.39239.63

CockroachDB

CockroachDB is a cloud-native, distributed SQL database for data intensive applications. This test profile uses a server-less CockroachDB configuration to test various Coackroach workloads on the local host with a single node. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 10% Reads - Concurrency: 256abc20K40K60K80K100KSE +/- 365.94, N = 385831.083364.987542.9

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 10% Reads - Concurrency: 128abc20K40K60K80K100KSE +/- 1335.25, N = 381692.179813.878523.6

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: MoVR - Concurrency: 256abc2004006008001000SE +/- 6.48, N = 3978.3946.3956.1

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: MoVR - Concurrency: 512abc2004006008001000SE +/- 12.10, N = 31004.61051.3948.9

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: MoVR - Concurrency: 1024abc2004006008001000SE +/- 15.13, N = 3995.0980.1982.2

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: MoVR - Concurrency: 128abc2004006008001000SE +/- 26.40, N = 31005.31034.41036.0

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPUabc2004006008001000SE +/- 5.99, N = 3755.37812.45736.40MIN: 720.26MIN: 775.85MIN: 711.541. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUabc2004006008001000SE +/- 36.23, N = 3755.61835.13767.00MIN: 685.81MIN: 793.57MIN: 742.011. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUabc160320480640800SE +/- 13.60, N = 3736.73713.11716.12MIN: 693.29MIN: 689.07MIN: 689.451. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUabc110220330440550SE +/- 18.31, N = 3504.67484.34463.13MIN: 472.1MIN: 472.46MIN: 450.071. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPUabc110220330440550SE +/- 19.24, N = 3485.54482.72499.92MIN: 439.04MIN: 465.88MIN: 485.421. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUabc110220330440550SE +/- 15.41, N = 3516.70496.95474.18MIN: 470.69MIN: 480.38MIN: 461.991. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: KNN CADabc306090120150117.92111.16116.76

CockroachDB

CockroachDB is a cloud-native, distributed SQL database for data intensive applications. This test profile uses a server-less CockroachDB configuration to test various Coackroach workloads on the local host with a single node. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 50% Reads - Concurrency: 1024abc20K40K60K80K100K95936.887162.191821.1

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 60% Reads - Concurrency: 1024abc20K40K60K80K100K102024.589996.297814.8

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 10% Reads - Concurrency: 1024abc20K40K60K80K100K75439.380303.381526.5

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 95% Reads - Concurrency: 1024abc30K60K90K120K150K114587.7109363.0126309.9

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 10% Reads - Concurrency: 512abc20K40K60K80K100K81929.678488.482853.0

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 60% Reads - Concurrency: 512abc20K40K60K80K100K103167.1102734.7105826.5

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 50% Reads - Concurrency: 512abc20K40K60K80K100K102949.990463.498677.7

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 95% Reads - Concurrency: 512abc30K60K90K120K150K124770.8130818.8104051.6

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 50% Reads - Concurrency: 256abc20K40K60K80K100K103724.995363.3108532.6

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 60% Reads - Concurrency: 256abc20K40K60K80K100K104879.0112692.496996.9

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 95% Reads - Concurrency: 256abc30K60K90K120K150K109396.8132576.0114216.8

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 60% Reads - Concurrency: 128abc20K40K60K80K100K96257.597956.1103471.9

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 50% Reads - Concurrency: 128abc20K40K60K80K100K101191.691347.7103180.8

OpenBenchmarking.orgops/s, More Is BetterCockroachDB 22.2Workload: KV, 95% Reads - Concurrency: 128abc30K60K90K120K150K115235.9128914.0129287.8

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Earthgecko Skylineabc2040608010081.0383.1881.08

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUabc60012001800240030003007.882999.573005.19MIN: 1376.35 / MAX: 3537.67MIN: 1487.96 / MAX: 3477.36MIN: 1799.02 / MAX: 3762.451. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP32 - Device: CPUabc369121513.0913.1513.141. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUabc60012001800240030002942.972944.022977.64MIN: 1578.88 / MAX: 3433.68MIN: 1597.94 / MAX: 3616.23MIN: 2273.94 / MAX: 3469.821. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Detection FP16 - Device: CPUabc369121513.4213.4013.211. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUabc4008001200160020001726.751729.691726.31MIN: 1186.91 / MAX: 3091.57MIN: 1532.26 / MAX: 2844.15MIN: 741.15 / MAX: 2959.511. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16 - Device: CPUabc61218243022.9522.9822.951. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Slowabc48121620SE +/- 0.03, N = 314.8214.8214.78

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUabc90180270360450429.25429.89429.47MIN: 206.78 / MAX: 506.89MIN: 231.69 / MAX: 613.56MIN: 191.88 / MAX: 529.071. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Face Detection FP16-INT8 - Device: CPUabc2040608010092.9592.8392.931. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUabc51015202518.5018.5218.50MIN: 13.23 / MAX: 51.65MIN: 12.08 / MAX: 57.28MIN: 10.72 / MAX: 47.281. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Person Vehicle Bike Detection FP16 - Device: CPUabc50010001500200025002157.132154.542156.731. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUabc306090120150153.57148.47147.66MIN: 64.36 / MAX: 1093.49MIN: 80.24 / MAX: 1097.3MIN: 132.11 / MAX: 1013.191. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Machine Translation EN To DE FP16 - Device: CPUabc60120180240300259.74268.94270.501. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUabc91827364538.1038.1338.08MIN: 27.95 / MAX: 101.78MIN: 20.38 / MAX: 106.36MIN: 26.81 / MAX: 105.351. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16 - Device: CPUabc20040060080010001047.871047.101048.401. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUabc36912159.169.149.15MIN: 6.15 / MAX: 39.84MIN: 5.01 / MAX: 38.39MIN: 5.38 / MAX: 41.311. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Vehicle Detection FP16-INT8 - Device: CPUabc90018002700360045004354.144366.104360.701. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUabc81624324033.5233.5733.50MIN: 13.93 / MAX: 127.81MIN: 15.75 / MAX: 191.18MIN: 16.27 / MAX: 150.011. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16 - Device: CPUabc50010001500200025002379.622376.322380.571. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUabc36912159.019.028.99MIN: 5.51 / MAX: 38.85MIN: 5.09 / MAX: 40.25MIN: 5.64 / MAX: 39.381. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Weld Porosity Detection FP16-INT8 - Device: CPUabc2K4K6K8K10K8849.018843.728870.431. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUabc0.31730.63460.95191.26921.58651.411.411.41MIN: 0.51 / MAX: 40.76MIN: 0.51 / MAX: 37.08MIN: 0.49 / MAX: 37.011. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUabc11K22K33K44K55K51056.5851048.8851211.851. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUabc0.34650.6931.03951.3861.73251.541.531.53MIN: 0.56 / MAX: 38.51MIN: 0.52 / MAX: 40.48MIN: 0.53 / MAX: 26.921. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2022.3Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUabc10K20K30K40K50K47089.4947321.7947285.921. (CXX) g++ options: -isystem -fsigned-char -ffunction-sections -fdata-sections -msse4.1 -msse4.2 -O3 -fno-strict-overflow -fwrapv -fPIC -fvisibility=hidden -Os -std=c++11 -MD -MT -MF

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Mediumabc48121620SE +/- 0.02, N = 316.7116.7116.71

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Slowabc510152025SE +/- 0.02, N = 320.0619.9420.061. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Mediumabc510152025SE +/- 0.02, N = 320.6520.6520.571. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

Timed Linux Kernel Compilation

This test times how long it takes to build the Linux kernel in a default configuration (defconfig) for the architecture being tested or alternatively an allmodconfig for building all possible kernel modules for the build. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterTimed Linux Kernel Compilation 6.1Build: defconfigabc714212835SE +/- 0.48, N = 326.7827.6827.78

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Contextual Anomaly Detector OSEabc102030405042.1842.6943.51

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPUabc246810SE +/- 0.04586, N = 36.945066.949827.07135MIN: 6.34MIN: 6.35MIN: 6.321. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPUabc0.84441.68882.53323.37764.222SE +/- 0.00631, N = 33.730783.752923.73148MIN: 3.51MIN: 3.52MIN: 3.511. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUabc0.08420.16840.25260.33680.421SE +/- 0.002095, N = 30.3708790.3699150.374184MIN: 0.33MIN: 0.33MIN: 0.341. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 1D - Data Type: f32 - Engine: CPUabc0.31650.6330.94951.2661.5825SE +/- 0.11422, N = 31.406531.316741.13240MIN: 1.06MIN: 1.14MIN: 0.981. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPUabc1.29782.59563.89345.19126.489SE +/- 0.28155, N = 34.998225.503655.76784MIN: 3.64MIN: 3.65MIN: 4.211. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUabc0.70471.40942.11412.81883.5235SE +/- 0.26717, N = 32.808083.132062.13509MIN: 1.72MIN: 2.23MIN: 1.581. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Very Fastabc1020304050SE +/- 0.54, N = 341.7641.6942.04

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Bayesian Changepointabc61218243024.1323.8323.82

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Ultra Fastabc1020304050SE +/- 0.62, N = 342.9641.7243.32

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 4K - Video Preset: Super Fastabc1020304050SE +/- 0.70, N = 343.0943.6743.63

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Very Fastabc1020304050SE +/- 0.52, N = 344.1644.1644.191. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Super Fastabc1122334455SE +/- 0.86, N = 346.8147.3047.581. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 4K - Video Preset: Ultra Fastabc1122334455SE +/- 0.33, N = 348.6447.9849.691. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Matrix Multiply Batch Shapes Transformer - Data Type: bf16bf16bf16 - Engine: CPUabc3691215SE +/- 0.97731, N = 311.5560312.165608.11091MIN: 9.09MIN: 11.24MIN: 7.491. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Matrix Multiply Batch Shapes Transformer - Data Type: f32 - Engine: CPUabc0.05370.10740.16110.21480.2685SE +/- 0.001872, N = 30.2321920.2357620.238500MIN: 0.21MIN: 0.22MIN: 0.221. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Matrix Multiply Batch Shapes Transformer - Data Type: u8s8f32 - Engine: CPUabc0.03840.07680.11520.15360.192SE +/- 0.002111, N = 30.1706410.1673260.170187MIN: 0.15MIN: 0.15MIN: 0.151. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Slowabc1122334455SE +/- 0.11, N = 350.5650.6450.32

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Mediumabc1326395265SE +/- 0.04, N = 355.8955.7255.50

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 3D - Data Type: f32 - Engine: CPUabc0.49090.98181.47271.96362.4545SE +/- 0.02958, N = 32.026412.051872.18165MIN: 1.82MIN: 1.87MIN: 1.941. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPUabc0.65471.30941.96412.61883.2735SE +/- 0.06218, N = 32.786572.909672.79006MIN: 2.04MIN: 2.19MIN: 2.051. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPUabc0.15690.31380.47070.62760.7845SE +/- 0.020877, N = 30.5663950.6974350.634303MIN: 0.47MIN: 0.57MIN: 0.551. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Relative Entropyabc369121512.9513.1112.98

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Slowabc20406080100SE +/- 0.58, N = 383.3681.9983.491. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Mediumabc20406080100SE +/- 0.19, N = 385.7885.3584.561. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPUabc0.32260.64520.96781.29041.613SE +/- 0.00817, N = 31.433781.407691.40601MIN: 1.28MIN: 1.23MIN: 1.291. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUabc0.26130.52260.78391.04521.3065SE +/- 0.00272, N = 31.158701.160661.16132MIN: 1MIN: 0.98MIN: 11. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPUabc0.47370.94741.42111.89482.3685SE +/- 0.00117, N = 32.087942.092552.10535MIN: 2.03MIN: 2.03MIN: 2.031. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

uvg266

uvg266 is an open-source VVC/H.266 (Versatile Video Coding) encoder based on Kvazaar as part of the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Very Fastabc306090120150SE +/- 0.68, N = 3147.71145.05146.66

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Super Fastabc306090120150SE +/- 1.19, N = 3148.14146.01148.56

OpenBenchmarking.orgFrames Per Second, More Is Betteruvg266 0.4.1Video Input: Bosphorus 1080p - Video Preset: Ultra Fastabc306090120150SE +/- 1.05, N = 3151.35152.75149.16

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Windowed Gaussianabc2468106.4176.2646.197

Kvazaar

This is a test of Kvazaar as a CPU-based H.265/HEVC video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Very Fastabc4080120160200SE +/- 1.82, N = 3177.06179.03180.911. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Super Fastabc4080120160200SE +/- 3.56, N = 3183.22176.22195.561. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

OpenBenchmarking.orgFrames Per Second, More Is BetterKvazaar 2.2Video Input: Bosphorus 1080p - Video Preset: Ultra Fastabc4080120160200SE +/- 2.47, N = 3189.93183.20181.681. (CC) gcc options: -pthread -ftree-vectorize -fvisibility=hidden -O2 -lpthread -lm -lrt

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPUabc0.81451.6292.44353.2584.0725SE +/- 0.00722, N = 33.593523.619883.58534MIN: 3.52MIN: 3.53MIN: 3.511. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPUabc0.1970.3940.5910.7880.985SE +/- 0.002166, N = 30.8756250.8667280.870342MIN: 0.83MIN: 0.83MIN: 0.831. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.0Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUabc0.04540.09080.13620.18160.227SE +/- 0.000867, N = 30.2017350.1977080.196388MIN: 0.19MIN: 0.19MIN: 0.181. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl -lpthread

99 Results Shown

BRL-CAD
OpenVKL:
  vklBenchmark Scalar
  vklBenchmark ISPC
Timed Linux Kernel Compilation
CockroachDB:
  KV, 10% Reads - 256
  KV, 10% Reads - 128
  MoVR - 256
  MoVR - 512
  MoVR - 1024
  MoVR - 128
oneDNN:
  Recurrent Neural Network Training - f32 - CPU
  Recurrent Neural Network Training - u8s8f32 - CPU
  Recurrent Neural Network Training - bf16bf16bf16 - CPU
  Recurrent Neural Network Inference - bf16bf16bf16 - CPU
  Recurrent Neural Network Inference - f32 - CPU
  Recurrent Neural Network Inference - u8s8f32 - CPU
Numenta Anomaly Benchmark
CockroachDB:
  KV, 50% Reads - 1024
  KV, 60% Reads - 1024
  KV, 10% Reads - 1024
  KV, 95% Reads - 1024
  KV, 10% Reads - 512
  KV, 60% Reads - 512
  KV, 50% Reads - 512
  KV, 95% Reads - 512
  KV, 50% Reads - 256
  KV, 60% Reads - 256
  KV, 95% Reads - 256
  KV, 60% Reads - 128
  KV, 50% Reads - 128
  KV, 95% Reads - 128
Numenta Anomaly Benchmark
OpenVINO:
  Person Detection FP32 - CPU:
    ms
    FPS
  Person Detection FP16 - CPU:
    ms
    FPS
  Face Detection FP16 - CPU:
    ms
    FPS
uvg266
OpenVINO:
  Face Detection FP16-INT8 - CPU:
    ms
    FPS
  Person Vehicle Bike Detection FP16 - CPU:
    ms
    FPS
  Machine Translation EN To DE FP16 - CPU:
    ms
    FPS
  Vehicle Detection FP16 - CPU:
    ms
    FPS
  Vehicle Detection FP16-INT8 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16 - CPU:
    ms
    FPS
uvg266
Kvazaar:
  Bosphorus 4K - Slow
  Bosphorus 4K - Medium
Timed Linux Kernel Compilation
Numenta Anomaly Benchmark
oneDNN:
  Deconvolution Batch shapes_1d - f32 - CPU
  Deconvolution Batch shapes_1d - bf16bf16bf16 - CPU
  Deconvolution Batch shapes_1d - u8s8f32 - CPU
  IP Shapes 1D - f32 - CPU
  IP Shapes 1D - bf16bf16bf16 - CPU
  IP Shapes 1D - u8s8f32 - CPU
uvg266
Numenta Anomaly Benchmark
uvg266:
  Bosphorus 4K - Ultra Fast
  Bosphorus 4K - Super Fast
Kvazaar:
  Bosphorus 4K - Very Fast
  Bosphorus 4K - Super Fast
  Bosphorus 4K - Ultra Fast
oneDNN:
  Matrix Multiply Batch Shapes Transformer - bf16bf16bf16 - CPU
  Matrix Multiply Batch Shapes Transformer - f32 - CPU
  Matrix Multiply Batch Shapes Transformer - u8s8f32 - CPU
uvg266:
  Bosphorus 1080p - Slow
  Bosphorus 1080p - Medium
oneDNN:
  IP Shapes 3D - f32 - CPU
  IP Shapes 3D - bf16bf16bf16 - CPU
  IP Shapes 3D - u8s8f32 - CPU
Numenta Anomaly Benchmark
Kvazaar:
  Bosphorus 1080p - Slow
  Bosphorus 1080p - Medium
oneDNN:
  Convolution Batch Shapes Auto - f32 - CPU
  Convolution Batch Shapes Auto - u8s8f32 - CPU
  Convolution Batch Shapes Auto - bf16bf16bf16 - CPU
uvg266:
  Bosphorus 1080p - Very Fast
  Bosphorus 1080p - Super Fast
  Bosphorus 1080p - Ultra Fast
Numenta Anomaly Benchmark
Kvazaar:
  Bosphorus 1080p - Very Fast
  Bosphorus 1080p - Super Fast
  Bosphorus 1080p - Ultra Fast
oneDNN:
  Deconvolution Batch shapes_3d - bf16bf16bf16 - CPU
  Deconvolution Batch shapes_3d - f32 - CPU
  Deconvolution Batch shapes_3d - u8s8f32 - CPU