feb compute AMD Ryzen 7 PRO 6850U testing with a LENOVO ThinkPad X13 Gen 3 21CM0001US (R22ET51W 1.21 BIOS) and AMD Radeon 680M 1GB on Fedora Linux 39 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2402179-NE-FEBCOMPUT81&grr&sro .
feb compute Processor Motherboard Chipset Memory Disk Graphics Audio Network OS Kernel Desktop Display Server OpenGL Compiler File-System Screen Resolution a b c AMD Ryzen 7 PRO 6850U @ 4.77GHz (8 Cores / 16 Threads) LENOVO ThinkPad X13 Gen 3 21CM0001US (R22ET51W 1.21 BIOS) AMD 17h-19h PCIe Root Complex 4 x 4GB DRAM-6400MT/s Micron MT62F1G32D4DR-031 WT 512GB Micron MTFDKBA512TFK AMD Radeon 680M 1GB AMD Rembrandt Radeon HD Audio Qualcomm QCNFA765 Fedora Linux 39 6.5.7-300.fc39.x86_64 (x86_64) GNOME Shell 45.0 X Server 1.20.14 + Wayland 4.6 Mesa 23.2.1 (LLVM 16.0.6 DRM 3.54) GCC 13.2.1 20230918 btrfs 1920x1200 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-redhat-linux --disable-libunwind-exceptions --enable-__cxa_atexit --enable-bootstrap --enable-cet --enable-checking=release --enable-gnu-indirect-function --enable-gnu-unique-object --enable-initfini-array --enable-languages=c,c++,fortran,objc,obj-c++,ada,go,d,m2,lto --enable-libstdcxx-backtrace --enable-link-serialization=1 --enable-multilib --enable-offload-defaulted --enable-offload-targets=nvptx-none --enable-plugin --enable-shared --enable-threads=posix --mandir=/usr/share/man --with-arch_32=i686 --with-build-config=bootstrap-lto --with-gcc-major-version-only --with-libstdcxx-zoneinfo=/usr/share/zoneinfo --with-linker-hash-style=gnu --with-tune=generic --without-cuda-driver Processor Details - Scaling Governor: amd-pstate-epp powersave (EPP: performance) - Platform Profile: balanced - CPU Microcode: 0xa404102 - ACPI Profile: balanced Python Details - Python 3.12.0 Security Details - SELinux + gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of safe RET no microcode + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
feb compute namd: STMV with 1,066,628 Atoms gromacs: MPI CPU - water_GMX50_bare oidn: RTLightmap.hdr.4096x4096 - CPU-Only namd: ATPase with 327,506 Atoms oidn: RT.ldr_alb_nrm.3840x2160 - CPU-Only oidn: RT.hdr_alb_nrm.3840x2160 - CPU-Only onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Standard onnx: yolov4 - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: bertsquad-12 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: T5 Encoder - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: super-resolution-10 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Parallel dav1d: Chimera 1080p 10-bit dav1d: Summer Nature 4K dav1d: Chimera 1080p dav1d: Summer Nature 1080p a b c 0.10784 0.726 0.12 0.37418 0.25 0.25 1501.12 0.666164 1008.01 0.992048 42.2148 23.6834 43.617 22.925 13.326 74.9963 13.0146 76.7556 225.857 4.42743 147.085 6.79852 99.3082 10.0687 219.138 4.56321 10.4632 95.5162 10.385 96.2635 65.5167 15.2624 67.0522 14.9126 3.22604 309.703 3.84125 260.159 9.46487 105.615 9.71292 102.93 14.7446 67.7988 20.835 47.9894 366.39 148.44 440.16 611.34 0.11155 0.725 0.12 0.37699 0.25 0.25 1533.36 0.65216 1547.21 0.646323 35.2194 28.387 43.5057 22.9837 13.321 75.0269 11.5617 86.4107 225.337 4.43764 146.562 6.82285 99.0097 10.0992 223.209 4.47998 9.88722 101.07 10.3681 96.4204 63.7541 15.6843 67.0649 14.9098 3.24057 308.325 3.74602 266.714 8.8344 113.151 9.73161 102.729 15.0008 66.6421 20.6536 48.411 360.2 148.55 440.37 614.45 0.11332 0.725 0.12 0.37550 0.25 0.25 1720.57 0.581199 1549.5 0.645364 42.2114 23.6855 43.6706 22.8968 13.3848 74.6672 11.592 86.172 159.899 6.25362 149.227 6.70092 99.536 10.0457 217.639 4.59463 9.91203 100.848 10.3789 96.3188 69.2185 14.4464 44.6524 22.3931 3.2361 308.766 3.7935 263.443 8.84917 112.961 9.75122 102.52 20.8967 47.8397 20.7828 48.1098 357.16 150.79 458.1 628.79 OpenBenchmarking.org
NAMD Input: STMV with 1,066,628 Atoms OpenBenchmarking.org ns/day, More Is Better NAMD 3.0b6 Input: STMV with 1,066,628 Atoms a b c 0.0255 0.051 0.0765 0.102 0.1275 0.10784 0.11155 0.11332
GROMACS Implementation: MPI CPU - Input: water_GMX50_bare OpenBenchmarking.org Ns Per Day, More Is Better GROMACS 2024 Implementation: MPI CPU - Input: water_GMX50_bare a b c 0.1634 0.3268 0.4902 0.6536 0.817 0.726 0.725 0.725 1. (CXX) g++ options: -O3 -lm
Intel Open Image Denoise Run: RTLightmap.hdr.4096x4096 - Device: CPU-Only OpenBenchmarking.org Images / Sec, More Is Better Intel Open Image Denoise 2.2 Run: RTLightmap.hdr.4096x4096 - Device: CPU-Only a b c 0.027 0.054 0.081 0.108 0.135 0.12 0.12 0.12
NAMD Input: ATPase with 327,506 Atoms OpenBenchmarking.org ns/day, More Is Better NAMD 3.0b6 Input: ATPase with 327,506 Atoms a b c 0.0848 0.1696 0.2544 0.3392 0.424 0.37418 0.37699 0.37550
Intel Open Image Denoise Run: RT.ldr_alb_nrm.3840x2160 - Device: CPU-Only OpenBenchmarking.org Images / Sec, More Is Better Intel Open Image Denoise 2.2 Run: RT.ldr_alb_nrm.3840x2160 - Device: CPU-Only a b c 0.0563 0.1126 0.1689 0.2252 0.2815 0.25 0.25 0.25
Intel Open Image Denoise Run: RT.hdr_alb_nrm.3840x2160 - Device: CPU-Only OpenBenchmarking.org Images / Sec, More Is Better Intel Open Image Denoise 2.2 Run: RT.hdr_alb_nrm.3840x2160 - Device: CPU-Only a b c 0.0563 0.1126 0.1689 0.2252 0.2815 0.25 0.25 0.25
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c 400 800 1200 1600 2000 1501.12 1533.36 1720.57 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c 0.1499 0.2998 0.4497 0.5996 0.7495 0.666164 0.652160 0.581199 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c 300 600 900 1200 1500 1008.01 1547.21 1549.50 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c 0.2232 0.4464 0.6696 0.8928 1.116 0.992048 0.646323 0.645364 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c 10 20 30 40 50 42.21 35.22 42.21 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c 7 14 21 28 35 23.68 28.39 23.69 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c 10 20 30 40 50 43.62 43.51 43.67 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c 6 12 18 24 30 22.93 22.98 22.90 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Parallel a b c 3 6 9 12 15 13.33 13.32 13.38 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Parallel a b c 20 40 60 80 100 75.00 75.03 74.67 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Standard a b c 3 6 9 12 15 13.01 11.56 11.59 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Standard a b c 20 40 60 80 100 76.76 86.41 86.17 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard a b c 50 100 150 200 250 225.86 225.34 159.90 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard a b c 2 4 6 8 10 4.42743 4.43764 6.25362 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c 30 60 90 120 150 147.09 146.56 149.23 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c 2 4 6 8 10 6.79852 6.82285 6.70092 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c 20 40 60 80 100 99.31 99.01 99.54 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c 3 6 9 12 15 10.07 10.10 10.05 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel a b c 50 100 150 200 250 219.14 223.21 217.64 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel a b c 1.0338 2.0676 3.1014 4.1352 5.169 4.56321 4.47998 4.59463 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard a b c 3 6 9 12 15 10.46320 9.88722 9.91203 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard a b c 20 40 60 80 100 95.52 101.07 100.85 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c 3 6 9 12 15 10.39 10.37 10.38 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c 20 40 60 80 100 96.26 96.42 96.32 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c 15 30 45 60 75 65.52 63.75 69.22 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c 4 8 12 16 20 15.26 15.68 14.45 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c 15 30 45 60 75 67.05 67.06 44.65 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c 5 10 15 20 25 14.91 14.91 22.39 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c 0.7291 1.4582 2.1873 2.9164 3.6455 3.22604 3.24057 3.23610 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c 70 140 210 280 350 309.70 308.33 308.77 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c 0.8643 1.7286 2.5929 3.4572 4.3215 3.84125 3.74602 3.79350 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c 60 120 180 240 300 260.16 266.71 263.44 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c 3 6 9 12 15 9.46487 8.83440 8.84917 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c 30 60 90 120 150 105.62 113.15 112.96 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c 3 6 9 12 15 9.71292 9.73161 9.75122 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c 20 40 60 80 100 102.93 102.73 102.52 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c 5 10 15 20 25 14.74 15.00 20.90 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c 15 30 45 60 75 67.80 66.64 47.84 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c 5 10 15 20 25 20.84 20.65 20.78 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c 11 22 33 44 55 47.99 48.41 48.11 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
dav1d Video Input: Chimera 1080p 10-bit OpenBenchmarking.org FPS, More Is Better dav1d 1.4 Video Input: Chimera 1080p 10-bit a b c 80 160 240 320 400 366.39 360.20 357.16 1. (CC) gcc options: -pthread
dav1d Video Input: Summer Nature 4K OpenBenchmarking.org FPS, More Is Better dav1d 1.4 Video Input: Summer Nature 4K a b c 30 60 90 120 150 148.44 148.55 150.79 1. (CC) gcc options: -pthread
dav1d Video Input: Chimera 1080p OpenBenchmarking.org FPS, More Is Better dav1d 1.4 Video Input: Chimera 1080p a b c 100 200 300 400 500 440.16 440.37 458.10 1. (CC) gcc options: -pthread
dav1d Video Input: Summer Nature 1080p OpenBenchmarking.org FPS, More Is Better dav1d 1.4 Video Input: Summer Nature 1080p a b c 140 280 420 560 700 611.34 614.45 628.79 1. (CC) gcc options: -pthread
Phoronix Test Suite v10.8.5