s76 compute hpc Tests for a future article. AMD Ryzen Threadripper 7980X 64-Cores testing with a System76 Thelio Major (FA Z5 BIOS) and NAVI31 45GB on Pop 22.04 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2402165-PTS-S76COMPU45&grr .
s76 compute hpc Processor Motherboard Chipset Memory Disk Graphics Audio Monitor Network OS Kernel Desktop Display Server OpenGL Vulkan Compiler File-System Screen Resolution sa b AMD Ryzen Threadripper 7980X 64-Cores @ 7.79GHz (64 Cores / 128 Threads) System76 Thelio Major (FA Z5 BIOS) AMD Device 14a4 4 x 32GB DRAM-4800MT/s Micron MTC20F1045S1RC48BA2 1000GB CT1000T700SSD5 NAVI31 45GB (1760/1124MHz) AMD Device 14cc DELL P2415Q Aquantia Device 14c0 + Realtek RTL8125 2.5GbE + Intel Wi-Fi 6 AX210/AX211/AX411 Pop 22.04 6.7.0-060700daily20240120-generic (x86_64) GNOME Shell 42.5 X Server 1.21.1.4 4.6 Mesa 23.3.2-1pop0~1704238321~22.04~36f1d0e (LLVM 15.0.7 DRM 3.57) 1.3.267 GCC 11.4.0 ext4 1920x1080 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xa108105 Python Details - Python 3.10.12 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
s76 compute hpc onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Parallel onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: yolov4 - CPU - Standard onnx: bertsquad-12 - CPU - Standard onnx: bertsquad-12 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: T5 Encoder - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: super-resolution-10 - CPU - Standard namd: STMV with 1,066,628 Atoms gromacs: MPI CPU - water_GMX50_bare oidn: RTLightmap.hdr.4096x4096 - CPU-Only namd: ATPase with 327,506 Atoms oidn: RT.hdr_alb_nrm.3840x2160 - CPU-Only oidn: RT.ldr_alb_nrm.3840x2160 - CPU-Only sa b 32.5316 30.7373 22.4612 44.5178 5.97364 167.224 9.53425 104.862 185.2 5.39937 160.978 6.21189 451.51 2.21477 102.806 9.72674 75.1213 13.3107 174.202 5.74038 2.94058 339.9 7.21687 138.555 77.3593 12.9261 24.9304 40.1074 4.4904 222.612 2.24407 445.476 11.4108 87.6269 4.85344 206.011 7.36444 135.763 10.1659 98.3648 1.65389 7.572 1.05 6.48727 2.21 2.22 32.8971 30.3955 23.2576 42.9929 6.08347 164.212 9.23622 108.244 186.924 5.3496 156.119 6.40524 454.956 2.19799 102.703 9.73582 75.2502 13.2884 173.827 5.75273 2.91968 342.328 7.14188 140.01 77.8896 12.8384 25.0596 39.9014 4.20204 237.882 2.22552 449.198 11.2646 88.7643 4.86018 205.719 7.44156 134.357 10.1688 98.337 1.65429 7.561 1.05 6.51941 2.21 2.22 OpenBenchmarking.org
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel sa b 8 16 24 32 40 32.53 32.90 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel sa b 7 14 21 28 35 30.74 30.40 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard sa b 6 12 18 24 30 22.46 23.26 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard sa b 10 20 30 40 50 44.52 42.99 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Parallel sa b 2 4 6 8 10 5.97364 6.08347 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Parallel sa b 40 80 120 160 200 167.22 164.21 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Standard sa b 3 6 9 12 15 9.53425 9.23622 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Standard sa b 20 40 60 80 100 104.86 108.24 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel sa b 40 80 120 160 200 185.20 186.92 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel sa b 1.2149 2.4298 3.6447 4.8596 6.0745 5.39937 5.34960 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Parallel sa b 40 80 120 160 200 160.98 156.12 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Parallel sa b 2 4 6 8 10 6.21189 6.40524 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel sa b 100 200 300 400 500 451.51 454.96 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel sa b 0.4983 0.9966 1.4949 1.9932 2.4915 2.21477 2.19799 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard sa b 20 40 60 80 100 102.81 102.70 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard sa b 3 6 9 12 15 9.72674 9.73582 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Standard sa b 20 40 60 80 100 75.12 75.25 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Standard sa b 3 6 9 12 15 13.31 13.29 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard sa b 40 80 120 160 200 174.20 173.83 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard sa b 1.2944 2.5888 3.8832 5.1776 6.472 5.74038 5.75273 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel sa b 0.6616 1.3232 1.9848 2.6464 3.308 2.94058 2.91968 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel sa b 70 140 210 280 350 339.90 342.33 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard sa b 2 4 6 8 10 7.21687 7.14188 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard sa b 30 60 90 120 150 138.56 140.01 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel sa b 20 40 60 80 100 77.36 77.89 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel sa b 3 6 9 12 15 12.93 12.84 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard sa b 6 12 18 24 30 24.93 25.06 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard sa b 9 18 27 36 45 40.11 39.90 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel sa b 1.0103 2.0206 3.0309 4.0412 5.0515 4.49040 4.20204 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel sa b 50 100 150 200 250 222.61 237.88 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard sa b 0.5049 1.0098 1.5147 2.0196 2.5245 2.24407 2.22552 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard sa b 100 200 300 400 500 445.48 449.20 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel sa b 3 6 9 12 15 11.41 11.26 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel sa b 20 40 60 80 100 87.63 88.76 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard sa b 1.0935 2.187 3.2805 4.374 5.4675 4.85344 4.86018 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard sa b 50 100 150 200 250 206.01 205.72 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel sa b 2 4 6 8 10 7.36444 7.44156 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel sa b 30 60 90 120 150 135.76 134.36 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard sa b 3 6 9 12 15 10.17 10.17 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard sa b 20 40 60 80 100 98.36 98.34 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
NAMD Input: STMV with 1,066,628 Atoms OpenBenchmarking.org ns/day, More Is Better NAMD 3.0b6 Input: STMV with 1,066,628 Atoms sa b 0.3722 0.7444 1.1166 1.4888 1.861 1.65389 1.65429
GROMACS Implementation: MPI CPU - Input: water_GMX50_bare OpenBenchmarking.org Ns Per Day, More Is Better GROMACS 2024 Implementation: MPI CPU - Input: water_GMX50_bare sa b 2 4 6 8 10 7.572 7.561 1. (CXX) g++ options: -O3 -lm
Intel Open Image Denoise Run: RTLightmap.hdr.4096x4096 - Device: CPU-Only OpenBenchmarking.org Images / Sec, More Is Better Intel Open Image Denoise 2.2 Run: RTLightmap.hdr.4096x4096 - Device: CPU-Only sa b 0.2363 0.4726 0.7089 0.9452 1.1815 1.05 1.05
NAMD Input: ATPase with 327,506 Atoms OpenBenchmarking.org ns/day, More Is Better NAMD 3.0b6 Input: ATPase with 327,506 Atoms sa b 2 4 6 8 10 6.48727 6.51941
Intel Open Image Denoise Run: RT.hdr_alb_nrm.3840x2160 - Device: CPU-Only OpenBenchmarking.org Images / Sec, More Is Better Intel Open Image Denoise 2.2 Run: RT.hdr_alb_nrm.3840x2160 - Device: CPU-Only sa b 0.4973 0.9946 1.4919 1.9892 2.4865 2.21 2.21
Intel Open Image Denoise Run: RT.ldr_alb_nrm.3840x2160 - Device: CPU-Only OpenBenchmarking.org Images / Sec, More Is Better Intel Open Image Denoise 2.2 Run: RT.ldr_alb_nrm.3840x2160 - Device: CPU-Only sa b 0.4995 0.999 1.4985 1.998 2.4975 2.22 2.22
Phoronix Test Suite v10.8.5