2024 year

AMD Ryzen Threadripper PRO 5965WX 24-Cores testing with a ASUS Pro WS WRX80E-SAGE SE WIFI (1201 BIOS) and ASUS NVIDIA NV106 2GB on Ubuntu 23.10 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2402040-NE-2024YEAR116&sor&grr.

2024 yearProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLCompilerFile-SystemScreen ResolutionabcdAMD Ryzen Threadripper PRO 5965WX 24-Cores @ 3.80GHz (24 Cores / 48 Threads)ASUS Pro WS WRX80E-SAGE SE WIFI (1201 BIOS)AMD Starship/Matisse8 x 16GB DDR4-2133MT/s Corsair CMK32GX4M2E3200C162048GB SOLIDIGM SSDPFKKW020X7ASUS NVIDIA NV106 2GBAMD Starship/MatisseVA24312 x Intel X550 + Intel Wi-Fi 6 AX200Ubuntu 23.106.5.0-13-generic (x86_64)GNOME Shell 45.0X Server + Waylandnouveau4.3 Mesa 23.2.1-1ubuntu3GCC 13.2.0ext41920x1080OpenBenchmarking.orgKernel Details- Transparent Huge Pages: madviseCompiler Details- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details- Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0xa008205Python Details- Python 3.11.6Security Details- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of safe RET no microcode + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

2024 yearlczero: BLASlczero: Eigenquicksilver: CTS2llama-cpp: llama-2-70b-chat.Q5_0.gguftensorflow: CPU - 16 - VGG-16quicksilver: CORAL2 P2cachebench: Readcachebench: Read / Modify / Writecachebench: Writetensorflow: CPU - 16 - ResNet-50llamafile: mistral-7b-instruct-v0.2.Q8_0 - CPUspeedb: Seq Fillrav1e: 1rav1e: 10deepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamllamafile: wizardcoder-python-34b-v1.0.Q6_K - CPUpytorch: CPU - 256 - ResNet-50pytorch: CPU - 16 - ResNet-50speedb: Rand Fill Syncspeedb: Rand Fillspeedb: Update Randspeedb: Read While Writingspeedb: Read Rand Write Randspeedb: Rand Readrav1e: 5quicksilver: CORAL2 P1deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamtensorflow: CPU - 1 - VGG-16deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamllama-cpp: llama-2-13b.Q4_0.ggufdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamrav1e: 6deepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamtensorflow: CPU - 16 - GoogLeNetpytorch: CPU - 1 - ResNet-50svt-av1: Preset 4 - Bosphorus 4Kcompress-lz4: 9 - Decompression Speedcompress-lz4: 9 - Compression Speedllama-cpp: llama-2-7b.Q4_0.ggufcompress-lz4: 3 - Decompression Speedcompress-lz4: 3 - Compression Speedcompress-lz4: 1 - Decompression Speedcompress-lz4: 1 - Compression Speedtensorflow: CPU - 16 - AlexNettensorflow: CPU - 1 - AlexNety-cruncher: 1Bllamafile: llava-v1.5-7b-q4 - CPUtensorflow: CPU - 1 - ResNet-50tensorflow: CPU - 1 - GoogLeNetsvt-av1: Preset 8 - Bosphorus 4Ksvt-av1: Preset 4 - Bosphorus 1080py-cruncher: 500Msvt-av1: Preset 12 - Bosphorus 4Ksvt-av1: Preset 13 - Bosphorus 4Ksvt-av1: Preset 8 - Bosphorus 1080psvt-av1: Preset 12 - Bosphorus 1080psvt-av1: Preset 13 - Bosphorus 1080pabcd173121206800001.948.512403000011543.372321130857.57756269134.68049819.8710.136206071.04410.634368.305132.518858.25417.161613.12976.13943.2531.9232.5047488558330431692700400723279111481348483.747242100005.2624189.909317.495685.1217446.631326.839435.762335.3479445.256526.911954.371618.387254.119418.47272.72392.958830.48945.997621.729653.4699224.180211.648.9109112.09145.95072012.20625.26179.8855150.042139.0436307.014679.1618151.466610.104698.91026.3518157.228639.0493306.991910.142498.5166.3619156.97011.3175757.163160.8540.686.6774840.544.2820.764595.9131.245019.5828.78100.446.2615.54517.228.859.9461.5318.8037.325190.916190.794122.948501.42543.554219146206466671.948.462402666711543.164687130069.84833869140.53099219.4510.156187761.04810.885369.772032.362158.349017.133713.238875.50673.2532.1532.1047708554997418848707040723076861474322143.791242300005.1753193.110617.5999681.0038448.907926.647835.9726333.3674448.040826.667254.536518.331754.334018.40002.70394.775930.280946.545321.474354.0612221.705311.328.9755111.28926.10101962.70475.29280.8465148.238839.3339304.771280.0470149.781810.121398.74566.4230155.483739.2555305.379510.136298.56356.4208155.54021.3252752.778460.1840.426.6694841.444.4820.954597.9131.105020.0829.36100.016.2315.49717.268.799.7461.83018.6827.349190.402192.726123.293506.596573.042225154206200001.958.482389000011543.096362130806.24568369142.43550319.6110.146047581.04410.957369.622832.421257.997817.237613.154575.98983.2531.5931.6547373557348423788704750223206701462857383.769242400005.1787192.980117.5377683.2461449.295626.674135.9278333.6358448.903126.70554.455418.358954.147418.46352.72393.834630.45146.091221.685353.7417223.051511.278.952111.58646.07471970.61065.28280.5729148.756139.1233306.502879.8946149.950710.14698.49796.4266155.40339.1181306.517510.127798.65266.4178155.61821.3025765.992360.0440.826.6784842.445.4920.744598131.45023.2829.15100.086.2315.53217.38.8516.4961.4718.4097.301192.157189.252122.95501.156580.467213151206000001.958.512384000011543.486939130851.3050769142.18885419.8110.136124281.05411.022369.5332.376258.409417.116213.20475.70733.2532.0732.2147267556675417457689600723168041464730363.891242900005.2804189.267317.5865681.5303449.160526.690235.837334.6424448.034926.543554.347118.395954.20418.44432.69394.375630.315946.133421.665553.8237222.723211.258.9586111.49656.10241962.15515.19180.2684149.268339.1902305.861480.052149.764710.106898.89126.4345155.201639.977299.829510.115198.76716.4346155.19261.3175757.271559.8240.356.6334844.544.5220.684596.7131.615019.5830.3799.96.2115.50117.258.899.7360.9518.9227.297192.683192.603122.616506.174565.906OpenBenchmarking.org

LeelaChessZero

Backend: BLAS

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.30Backend: BLAScbda50100150200250SE +/- 0.33, N = 32252192131731. (CXX) g++ options: -flto -pthread

LeelaChessZero

Backend: Eigen

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.30Backend: Eigencdba306090120150SE +/- 2.08, N = 31541511461211. (CXX) g++ options: -flto -pthread

Quicksilver

Input: CTS2

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CTS2abcd4M8M12M16M20MSE +/- 6666.67, N = 3206800002064666720620000206000001. (CXX) g++ options: -fopenmp -O3 -march=native

Llama.cpp

Model: llama-2-70b-chat.Q5_0.gguf

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b1808Model: llama-2-70b-chat.Q5_0.ggufdcba0.43880.87761.31641.75522.194SE +/- 0.00, N = 31.951.951.941.941. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas

TensorFlow

Device: CPU - Batch Size: 16 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: VGG-16dacb246810SE +/- 0.03, N = 38.518.518.488.46

Quicksilver

Input: CORAL2 P2

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P2abcd5M10M15M20M25MSE +/- 3333.33, N = 3240300002402666723890000238400001. (CXX) g++ options: -fopenmp -O3 -march=native

CacheBench

Test: Read

OpenBenchmarking.orgMB/s, More Is BetterCacheBenchTest: Readdabc2K4K6K8K10KSE +/- 0.09, N = 311543.4911543.3711543.1611543.10MIN: 11542.8 / MAX: 11544.64MIN: 11542.37 / MAX: 11544.55MIN: 11542.65 / MAX: 11544.48MIN: 11542.7 / MAX: 11543.411. (CC) gcc options: -O3 -lrt

CacheBench

Test: Read / Modify / Write

OpenBenchmarking.orgMB/s, More Is BetterCacheBenchTest: Read / Modify / Writeadcb30K60K90K120K150KSE +/- 386.79, N = 3130857.58130851.31130806.25130069.85MIN: 112608.55 / MAX: 137126.28MIN: 112492.8 / MAX: 137124.99MIN: 112724.52 / MAX: 137125.96MIN: 101861.72 / MAX: 137133.311. (CC) gcc options: -O3 -lrt

CacheBench

Test: Write

OpenBenchmarking.orgMB/s, More Is BetterCacheBenchTest: Writecdba15K30K45K60K75KSE +/- 3.29, N = 369142.4469142.1969140.5369134.68MIN: 68884.8 / MAX: 69218.23MIN: 68886.61 / MAX: 69217.36MIN: 68883.98 / MAX: 69225.86MIN: 68881.15 / MAX: 69208.761. (CC) gcc options: -O3 -lrt

TensorFlow

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: ResNet-50adcb510152025SE +/- 0.08, N = 319.8719.8119.6119.45

Llamafile

Test: mistral-7b-instruct-v0.2.Q8_0 - Acceleration: CPU

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.6Test: mistral-7b-instruct-v0.2.Q8_0 - Acceleration: CPUbcda3691215SE +/- 0.01, N = 310.1510.1410.1310.13

Speedb

Test: Sequential Fill

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Sequential Fillabdc130K260K390K520K650KSE +/- 3239.87, N = 36206076187766124286047581. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

rav1e

Speed: 1

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 1dbca0.23720.47440.71160.94881.186SE +/- 0.004, N = 31.0541.0481.0441.044

rav1e

Speed: 10

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 10dcba3691215SE +/- 0.11, N = 511.0210.9610.8910.63

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Streamadcb80160240320400SE +/- 0.27, N = 3368.31369.53369.62369.77

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Streamacdb816243240SE +/- 0.05, N = 332.5232.4232.3832.36

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Streamcabd1326395265SE +/- 0.07, N = 358.0058.2558.3558.41

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Streamcabd48121620SE +/- 0.02, N = 317.2417.1617.1317.12

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamacdb3691215SE +/- 0.02, N = 313.1313.1513.2013.24

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamacdb20406080100SE +/- 0.14, N = 376.1475.9975.7175.51

Llamafile

Test: wizardcoder-python-34b-v1.0.Q6_K - Acceleration: CPU

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.6Test: wizardcoder-python-34b-v1.0.Q6_K - Acceleration: CPUdcba0.73131.46262.19392.92523.6565SE +/- 0.00, N = 33.253.253.253.25

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-50bdac714212835SE +/- 0.11, N = 332.1532.0731.9231.59MIN: 30.21 / MAX: 32.69MIN: 30.1 / MAX: 32.3MIN: 30 / MAX: 32.18MIN: 29.73 / MAX: 32.12

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-50adbc816243240SE +/- 0.12, N = 332.5032.2132.1031.65MIN: 30.56 / MAX: 32.75MIN: 30.29 / MAX: 32.43MIN: 29.1 / MAX: 32.53MIN: 29.55 / MAX: 31.86

Speedb

Test: Random Fill Sync

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Random Fill Syncbacd10K20K30K40K50KSE +/- 66.17, N = 3477084748847373472671. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

Speedb

Test: Random Fill

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Random Fillacdb120K240K360K480K600KSE +/- 4227.88, N = 35583305573485566755549971. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

Speedb

Test: Update Random

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Update Randomacbd90K180K270K360K450KSE +/- 4060.59, N = 34316924237884188484174571. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

Speedb

Test: Read While Writing

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Read While Writingbcad1.5M3M4.5M6M7.5MSE +/- 60887.57, N = 370704077047502700400768960071. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

Speedb

Test: Read Random Write Random

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Read Random Write Randomacdb500K1000K1500K2000K2500KSE +/- 1258.96, N = 323279112320670231680423076861. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

Speedb

Test: Random Read

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Random Readabdc30M60M90M120M150MSE +/- 81483.06, N = 31481348481474322141464730361462857381. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

rav1e

Speed: 5

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 5dbca0.87551.7512.62653.5024.3775SE +/- 0.014, N = 33.8913.7913.7693.747

Quicksilver

Input: CORAL2 P1

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P1dcba5M10M15M20M25MSE +/- 11547.01, N = 3242900002424000024230000242100001. (CXX) g++ options: -fopenmp -O3 -march=native

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streambcad1.18812.37623.56434.75245.9405SE +/- 0.0173, N = 35.17535.17875.26245.2804

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streambcad4080120160200SE +/- 0.65, N = 3193.11192.98189.91189.27

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamacdb48121620SE +/- 0.02, N = 317.5017.5417.5917.60

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamacdb150300450600750SE +/- 0.83, N = 3685.12683.25681.53681.00

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamabdc100200300400500SE +/- 0.27, N = 3446.63448.91449.16449.30

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamadcb612182430SE +/- 0.05, N = 326.8426.6926.6726.65

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamadcb816243240SE +/- 0.05, N = 335.7635.8435.9335.97

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamadcb70140210280350SE +/- 0.44, N = 3335.35334.64333.64333.37

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamadbc100200300400500SE +/- 0.32, N = 3445.26448.03448.04448.90

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamacbd612182430SE +/- 0.03, N = 326.9126.7126.6726.54

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamdacb1224364860SE +/- 0.02, N = 354.3554.3754.4654.54

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamdacb510152025SE +/- 0.01, N = 318.4018.3918.3618.33

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamacdb1224364860SE +/- 0.03, N = 354.1254.1554.2054.33

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamacdb510152025SE +/- 0.01, N = 318.4718.4618.4418.40

TensorFlow

Device: CPU - Batch Size: 1 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: VGG-16cabd0.6121.2241.8362.4483.06SE +/- 0.01, N = 32.722.722.702.69

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamacdb90180270360450SE +/- 0.41, N = 3392.96393.83394.38394.78

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamacdb714212835SE +/- 0.02, N = 330.4930.4530.3230.28

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamacdb1122334455SE +/- 0.12, N = 346.0046.0946.1346.55

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamacdb510152025SE +/- 0.05, N = 321.7321.6921.6721.47

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamacdb1224364860SE +/- 0.03, N = 353.4753.7453.8254.06

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamacdb50100150200250SE +/- 0.12, N = 3224.18223.05222.72221.71

Llama.cpp

Model: llama-2-13b.Q4_0.gguf

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b1808Model: llama-2-13b.Q4_0.ggufabcd3691215SE +/- 0.06, N = 311.6411.3211.2711.251. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamacdb3691215SE +/- 0.0211, N = 38.91098.95208.95868.9755

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamacdb306090120150SE +/- 0.26, N = 3112.09111.59111.50111.29

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamacbd246810SE +/- 0.0329, N = 35.95076.07476.10106.1024

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamacbd400800120016002000SE +/- 10.49, N = 32012.211970.611962.701962.16

rav1e

Speed: 6

OpenBenchmarking.orgFrames Per Second, More Is Betterrav1e 0.7Speed: 6bcad1.19072.38143.57214.76285.9535SE +/- 0.008, N = 35.2925.2825.2615.191

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamadcb20406080100SE +/- 0.20, N = 379.8980.2780.5780.85

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamadcb306090120150SE +/- 0.36, N = 3150.04149.27148.76148.24

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamacdb918273645SE +/- 0.01, N = 339.0439.1239.1939.33

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamacdb70140210280350SE +/- 0.13, N = 3307.01306.50305.86304.77

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamacbd20406080100SE +/- 0.02, N = 379.1679.8980.0580.05

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamacbd306090120150SE +/- 0.01, N = 3151.47149.95149.78149.76

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamadbc3691215SE +/- 0.03, N = 310.1010.1110.1210.15

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamadbc20406080100SE +/- 0.29, N = 398.9198.8998.7598.50

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamabcd246810SE +/- 0.0106, N = 36.35186.42306.42666.4345

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamabcd306090120150SE +/- 0.26, N = 3157.23155.48155.40155.20

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamacbd918273645SE +/- 0.09, N = 339.0539.1239.2639.98

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamacbd70140210280350SE +/- 0.76, N = 3306.99306.52305.38299.83

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Streamdcba3691215SE +/- 0.01, N = 310.1210.1310.1410.14

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Streamdcba20406080100SE +/- 0.09, N = 398.7798.6598.5698.52

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamacbd246810SE +/- 0.0037, N = 36.36196.41786.42086.4346

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamacbd306090120150SE +/- 0.08, N = 3156.97155.62155.54155.19

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamcadb0.29820.59640.89461.19281.491SE +/- 0.0024, N = 31.30251.31751.31751.3252

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.6Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamcdab170340510680850SE +/- 1.33, N = 3765.99757.27757.16752.78

TensorFlow

Device: CPU - Batch Size: 16 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: GoogLeNetabcd1428425670SE +/- 0.36, N = 360.8560.1860.0459.82

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-50cabd918273645SE +/- 0.19, N = 340.8240.6840.4240.35MIN: 37.73 / MAX: 41.05MIN: 37.73 / MAX: 40.91MIN: 37.5 / MAX: 41MIN: 37.34 / MAX: 40.65

SVT-AV1

Encoder Mode: Preset 4 - Input: Bosphorus 4K

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 4 - Input: Bosphorus 4Kcabd246810SE +/- 0.015, N = 36.6786.6776.6696.6331. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

LZ4 Compression

Compression Level: 9 - Decompression Speed

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 9 - Decompression Speeddcba10002000300040005000SE +/- 1.12, N = 34844.54842.44841.44840.51. (CC) gcc options: -O3

LZ4 Compression

Compression Level: 9 - Compression Speed

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 9 - Compression Speedcdba1020304050SE +/- 0.02, N = 345.4944.5244.4844.281. (CC) gcc options: -O3

Llama.cpp

Model: llama-2-7b.Q4_0.gguf

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b1808Model: llama-2-7b.Q4_0.ggufbacd510152025SE +/- 0.24, N = 420.9520.7620.7420.681. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas

LZ4 Compression

Compression Level: 3 - Decompression Speed

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 3 - Decompression Speedcbda10002000300040005000SE +/- 0.63, N = 34598.04597.94596.74595.91. (CC) gcc options: -O3

LZ4 Compression

Compression Level: 3 - Compression Speed

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 3 - Compression Speeddcab306090120150SE +/- 0.30, N = 3131.61131.40131.24131.101. (CC) gcc options: -O3

LZ4 Compression

Compression Level: 1 - Decompression Speed

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 1 - Decompression Speedcbda11002200330044005500SE +/- 1.42, N = 35023.25020.05019.55019.51. (CC) gcc options: -O3

LZ4 Compression

Compression Level: 1 - Compression Speed

OpenBenchmarking.orgMB/s, More Is BetterLZ4 Compression 1.9.4Compression Level: 1 - Compression Speeddbca2004006008001000SE +/- 0.63, N = 3830.37829.36829.15828.781. (CC) gcc options: -O3

TensorFlow

Device: CPU - Batch Size: 16 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: AlexNetacbd20406080100SE +/- 0.20, N = 3100.44100.08100.0199.90

TensorFlow

Device: CPU - Batch Size: 1 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: AlexNetacbd246810SE +/- 0.01, N = 36.266.236.236.21

Y-Cruncher

Pi Digits To Calculate: 1B

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 1Bbdca48121620SE +/- 0.01, N = 315.5015.5015.5315.55

Llamafile

Test: llava-v1.5-7b-q4 - Acceleration: CPU

OpenBenchmarking.orgTokens Per Second, More Is BetterLlamafile 0.6Test: llava-v1.5-7b-q4 - Acceleration: CPUcbda48121620SE +/- 0.01, N = 317.3017.2617.2517.22

TensorFlow

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: ResNet-50dcab246810SE +/- 0.05, N = 38.898.858.858.79

TensorFlow

Device: CPU - Batch Size: 1 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: GoogLeNetcabd48121620SE +/- 0.09, N = 316.499.949.749.73

SVT-AV1

Encoder Mode: Preset 8 - Input: Bosphorus 4K

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 8 - Input: Bosphorus 4Kbacd1428425670SE +/- 0.07, N = 361.8361.5361.4760.951. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

SVT-AV1

Encoder Mode: Preset 4 - Input: Bosphorus 1080p

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 4 - Input: Bosphorus 1080pdabc510152025SE +/- 0.08, N = 318.9218.8018.6818.411. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Y-Cruncher

Pi Digits To Calculate: 500M

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 500Mdcab246810SE +/- 0.007, N = 37.2977.3017.3257.349

SVT-AV1

Encoder Mode: Preset 12 - Input: Bosphorus 4K

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 12 - Input: Bosphorus 4Kdcab4080120160200SE +/- 1.08, N = 3192.68192.16190.92190.401. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

SVT-AV1

Encoder Mode: Preset 13 - Input: Bosphorus 4K

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 13 - Input: Bosphorus 4Kbdac4080120160200SE +/- 0.80, N = 3192.73192.60190.79189.251. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

SVT-AV1

Encoder Mode: Preset 8 - Input: Bosphorus 1080p

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 8 - Input: Bosphorus 1080pbcad306090120150SE +/- 0.59, N = 3123.29122.95122.95122.621. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

SVT-AV1

Encoder Mode: Preset 12 - Input: Bosphorus 1080p

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 12 - Input: Bosphorus 1080pbdac110220330440550SE +/- 5.37, N = 5506.60506.17501.42501.161. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

SVT-AV1

Encoder Mode: Preset 13 - Input: Bosphorus 1080p

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 1.8Encoder Mode: Preset 13 - Input: Bosphorus 1080pcbda130260390520650SE +/- 7.15, N = 3580.47573.04565.91543.551. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq


Phoronix Test Suite v10.8.5