2024 year AMD Ryzen Threadripper PRO 5965WX 24-Cores testing with a ASUS Pro WS WRX80E-SAGE SE WIFI (1201 BIOS) and ASUS NVIDIA NV106 2GB on Ubuntu 23.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2402040-NE-2024YEAR116&gru&rdt .
2024 year Processor Motherboard Chipset Memory Disk Graphics Audio Monitor Network OS Kernel Desktop Display Server Display Driver OpenGL Compiler File-System Screen Resolution a b c d AMD Ryzen Threadripper PRO 5965WX 24-Cores @ 3.80GHz (24 Cores / 48 Threads) ASUS Pro WS WRX80E-SAGE SE WIFI (1201 BIOS) AMD Starship/Matisse 8 x 16GB DDR4-2133MT/s Corsair CMK32GX4M2E3200C16 2048GB SOLIDIGM SSDPFKKW020X7 ASUS NVIDIA NV106 2GB AMD Starship/Matisse VA2431 2 x Intel X550 + Intel Wi-Fi 6 AX200 Ubuntu 23.10 6.5.0-13-generic (x86_64) GNOME Shell 45.0 X Server + Wayland nouveau 4.3 Mesa 23.2.1-1ubuntu3 GCC 13.2.0 ext4 1920x1080 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0xa008205 Python Details - Python 3.11.6 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of safe RET no microcode + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
2024 year pytorch: CPU - 1 - ResNet-50 pytorch: CPU - 16 - ResNet-50 pytorch: CPU - 256 - ResNet-50 quicksilver: CTS2 quicksilver: CORAL2 P1 quicksilver: CORAL2 P2 rav1e: 1 rav1e: 5 rav1e: 6 rav1e: 10 svt-av1: Preset 4 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 4K svt-av1: Preset 12 - Bosphorus 4K svt-av1: Preset 13 - Bosphorus 4K svt-av1: Preset 4 - Bosphorus 1080p svt-av1: Preset 8 - Bosphorus 1080p svt-av1: Preset 12 - Bosphorus 1080p svt-av1: Preset 13 - Bosphorus 1080p tensorflow: CPU - 1 - VGG-16 tensorflow: CPU - 1 - AlexNet tensorflow: CPU - 16 - VGG-16 tensorflow: CPU - 16 - AlexNet tensorflow: CPU - 1 - GoogLeNet tensorflow: CPU - 1 - ResNet-50 tensorflow: CPU - 16 - GoogLeNet tensorflow: CPU - 16 - ResNet-50 deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream cachebench: Read cachebench: Write cachebench: Read / Modify / Write compress-lz4: 1 - Compression Speed compress-lz4: 1 - Decompression Speed compress-lz4: 3 - Compression Speed compress-lz4: 3 - Decompression Speed compress-lz4: 9 - Compression Speed compress-lz4: 9 - Decompression Speed lczero: BLAS lczero: Eigen speedb: Rand Fill speedb: Rand Read speedb: Update Rand speedb: Seq Fill speedb: Rand Fill Sync speedb: Read While Writing speedb: Read Rand Write Rand llama-cpp: llama-2-7b.Q4_0.gguf llama-cpp: llama-2-13b.Q4_0.gguf llama-cpp: llama-2-70b-chat.Q5_0.gguf llamafile: llava-v1.5-7b-q4 - CPU llamafile: mistral-7b-instruct-v0.2.Q8_0 - CPU llamafile: wizardcoder-python-34b-v1.0.Q6_K - CPU deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream y-cruncher: 1B y-cruncher: 500M a b c d 40.68 32.50 31.92 20680000 24210000 24030000 1.044 3.747 5.261 10.634 6.677 61.53 190.916 190.794 18.803 122.948 501.42 543.554 2.72 6.26 8.51 100.44 9.94 8.85 60.85 19.87 26.8394 18.3872 685.1217 189.9093 307.0146 157.2286 2012.2062 757.1631 150.0421 98.516 32.5188 17.1616 306.9919 156.9701 151.4666 98.9102 224.1802 112.0914 30.489 21.7296 335.3479 76.1394 26.9119 18.4727 11543.372321 69134.680498 130857.577562 828.78 5019.5 131.24 4595.9 44.28 4840.5 173 121 558330 148134848 431692 620607 47488 7004007 2327911 20.76 11.64 1.94 17.22 10.13 3.25 446.6313 54.3716 17.495 5.2624 39.0436 6.3518 5.9507 1.3175 79.8855 10.1424 368.3051 58.254 39.0493 6.3619 79.1618 10.1046 53.4699 8.9109 392.9588 45.9976 35.762 13.129 445.2565 54.1194 15.545 7.325 40.42 32.10 32.15 20646667 24230000 24026667 1.048 3.791 5.292 10.885 6.669 61.830 190.402 192.726 18.682 123.293 506.596 573.042 2.70 6.23 8.46 100.01 9.74 8.79 60.18 19.45 26.6478 18.3317 681.0038 193.1106 304.7712 155.4837 1962.7047 752.7784 148.2388 98.5635 32.3621 17.1337 305.3795 155.5402 149.7818 98.7456 221.7053 111.2892 30.2809 21.4743 333.3674 75.5067 26.6672 18.4000 11543.164687 69140.530992 130069.848338 829.36 5020.0 131.10 4597.9 44.48 4841.4 219 146 554997 147432214 418848 618776 47708 7070407 2307686 20.95 11.32 1.94 17.26 10.15 3.25 448.9079 54.5365 17.5999 5.1753 39.3339 6.4230 6.1010 1.3252 80.8465 10.1362 369.7720 58.3490 39.2555 6.4208 80.0470 10.1213 54.0612 8.9755 394.7759 46.5453 35.9726 13.2388 448.0408 54.3340 15.497 7.349 40.82 31.65 31.59 20620000 24240000 23890000 1.044 3.769 5.282 10.957 6.678 61.47 192.157 189.252 18.409 122.95 501.156 580.467 2.72 6.23 8.48 100.08 16.49 8.85 60.04 19.61 26.6741 18.3589 683.2461 192.9801 306.5028 155.403 1970.6106 765.9923 148.7561 98.6526 32.4212 17.2376 306.5175 155.6182 149.9507 98.4979 223.0515 111.5864 30.451 21.6853 333.6358 75.9898 26.705 18.4635 11543.096362 69142.435503 130806.245683 829.15 5023.2 131.4 4598 45.49 4842.4 225 154 557348 146285738 423788 604758 47373 7047502 2320670 20.74 11.27 1.95 17.3 10.14 3.25 449.2956 54.4554 17.5377 5.1787 39.1233 6.4266 6.0747 1.3025 80.5729 10.1277 369.6228 57.9978 39.1181 6.4178 79.8946 10.146 53.7417 8.952 393.8346 46.0912 35.9278 13.1545 448.9031 54.1474 15.532 7.301 40.35 32.21 32.07 20600000 24290000 23840000 1.054 3.891 5.191 11.022 6.633 60.95 192.683 192.603 18.922 122.616 506.174 565.906 2.69 6.21 8.51 99.9 9.73 8.89 59.82 19.81 26.6902 18.3959 681.5303 189.2673 305.8614 155.2016 1962.1551 757.2715 149.2683 98.7671 32.3762 17.1162 299.8295 155.1926 149.7647 98.8912 222.7232 111.4965 30.3159 21.6655 334.6424 75.7073 26.5435 18.4443 11543.486939 69142.188854 130851.30507 830.37 5019.5 131.61 4596.7 44.52 4844.5 213 151 556675 146473036 417457 612428 47267 6896007 2316804 20.68 11.25 1.95 17.25 10.13 3.25 449.1605 54.3471 17.5865 5.2804 39.1902 6.4345 6.1024 1.3175 80.2684 10.1151 369.53 58.4094 39.977 6.4346 80.052 10.1068 53.8237 8.9586 394.3756 46.1334 35.837 13.204 448.0349 54.204 15.501 7.297 OpenBenchmarking.org
PyTorch Device: CPU - Batch Size: 1 - Model: ResNet-50 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 1 - Model: ResNet-50 a b c d 9 18 27 36 45 SE +/- 0.19, N = 3 40.68 40.42 40.82 40.35 MIN: 37.73 / MAX: 40.91 MIN: 37.5 / MAX: 41 MIN: 37.73 / MAX: 41.05 MIN: 37.34 / MAX: 40.65
PyTorch Device: CPU - Batch Size: 16 - Model: ResNet-50 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 16 - Model: ResNet-50 a b c d 8 16 24 32 40 SE +/- 0.12, N = 3 32.50 32.10 31.65 32.21 MIN: 30.56 / MAX: 32.75 MIN: 29.1 / MAX: 32.53 MIN: 29.55 / MAX: 31.86 MIN: 30.29 / MAX: 32.43
PyTorch Device: CPU - Batch Size: 256 - Model: ResNet-50 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.1 Device: CPU - Batch Size: 256 - Model: ResNet-50 a b c d 7 14 21 28 35 SE +/- 0.11, N = 3 31.92 32.15 31.59 32.07 MIN: 30 / MAX: 32.18 MIN: 30.21 / MAX: 32.69 MIN: 29.73 / MAX: 32.12 MIN: 30.1 / MAX: 32.3
Quicksilver Input: CTS2 OpenBenchmarking.org Figure Of Merit, More Is Better Quicksilver 20230818 Input: CTS2 a b c d 4M 8M 12M 16M 20M SE +/- 6666.67, N = 3 20680000 20646667 20620000 20600000 1. (CXX) g++ options: -fopenmp -O3 -march=native
Quicksilver Input: CORAL2 P1 OpenBenchmarking.org Figure Of Merit, More Is Better Quicksilver 20230818 Input: CORAL2 P1 a b c d 5M 10M 15M 20M 25M SE +/- 11547.01, N = 3 24210000 24230000 24240000 24290000 1. (CXX) g++ options: -fopenmp -O3 -march=native
Quicksilver Input: CORAL2 P2 OpenBenchmarking.org Figure Of Merit, More Is Better Quicksilver 20230818 Input: CORAL2 P2 a b c d 5M 10M 15M 20M 25M SE +/- 3333.33, N = 3 24030000 24026667 23890000 23840000 1. (CXX) g++ options: -fopenmp -O3 -march=native
rav1e Speed: 1 OpenBenchmarking.org Frames Per Second, More Is Better rav1e 0.7 Speed: 1 a b c d 0.2372 0.4744 0.7116 0.9488 1.186 SE +/- 0.004, N = 3 1.044 1.048 1.044 1.054
rav1e Speed: 5 OpenBenchmarking.org Frames Per Second, More Is Better rav1e 0.7 Speed: 5 a b c d 0.8755 1.751 2.6265 3.502 4.3775 SE +/- 0.014, N = 3 3.747 3.791 3.769 3.891
rav1e Speed: 6 OpenBenchmarking.org Frames Per Second, More Is Better rav1e 0.7 Speed: 6 a b c d 1.1907 2.3814 3.5721 4.7628 5.9535 SE +/- 0.008, N = 3 5.261 5.292 5.282 5.191
rav1e Speed: 10 OpenBenchmarking.org Frames Per Second, More Is Better rav1e 0.7 Speed: 10 a b c d 3 6 9 12 15 SE +/- 0.11, N = 5 10.63 10.89 10.96 11.02
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 4 - Input: Bosphorus 4K a b c d 2 4 6 8 10 SE +/- 0.015, N = 3 6.677 6.669 6.678 6.633 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 8 - Input: Bosphorus 4K a b c d 14 28 42 56 70 SE +/- 0.07, N = 3 61.53 61.83 61.47 60.95 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 12 - Input: Bosphorus 4K a b c d 40 80 120 160 200 SE +/- 1.08, N = 3 190.92 190.40 192.16 192.68 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 13 - Input: Bosphorus 4K a b c d 40 80 120 160 200 SE +/- 0.80, N = 3 190.79 192.73 189.25 192.60 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 4 - Input: Bosphorus 1080p a b c d 5 10 15 20 25 SE +/- 0.08, N = 3 18.80 18.68 18.41 18.92 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 8 - Input: Bosphorus 1080p a b c d 30 60 90 120 150 SE +/- 0.59, N = 3 122.95 123.29 122.95 122.62 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 12 - Input: Bosphorus 1080p a b c d 110 220 330 440 550 SE +/- 5.37, N = 5 501.42 506.60 501.16 506.17 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 13 - Input: Bosphorus 1080p a b c d 130 260 390 520 650 SE +/- 7.15, N = 3 543.55 573.04 580.47 565.91 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
TensorFlow Device: CPU - Batch Size: 1 - Model: VGG-16 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 1 - Model: VGG-16 a b c d 0.612 1.224 1.836 2.448 3.06 SE +/- 0.01, N = 3 2.72 2.70 2.72 2.69
TensorFlow Device: CPU - Batch Size: 1 - Model: AlexNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 1 - Model: AlexNet a b c d 2 4 6 8 10 SE +/- 0.01, N = 3 6.26 6.23 6.23 6.21
TensorFlow Device: CPU - Batch Size: 16 - Model: VGG-16 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 16 - Model: VGG-16 a b c d 2 4 6 8 10 SE +/- 0.03, N = 3 8.51 8.46 8.48 8.51
TensorFlow Device: CPU - Batch Size: 16 - Model: AlexNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 16 - Model: AlexNet a b c d 20 40 60 80 100 SE +/- 0.20, N = 3 100.44 100.01 100.08 99.90
TensorFlow Device: CPU - Batch Size: 1 - Model: GoogLeNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 1 - Model: GoogLeNet a b c d 4 8 12 16 20 SE +/- 0.09, N = 3 9.94 9.74 16.49 9.73
TensorFlow Device: CPU - Batch Size: 1 - Model: ResNet-50 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 1 - Model: ResNet-50 a b c d 2 4 6 8 10 SE +/- 0.05, N = 3 8.85 8.79 8.85 8.89
TensorFlow Device: CPU - Batch Size: 16 - Model: GoogLeNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 16 - Model: GoogLeNet a b c d 14 28 42 56 70 SE +/- 0.36, N = 3 60.85 60.18 60.04 59.82
TensorFlow Device: CPU - Batch Size: 16 - Model: ResNet-50 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 16 - Model: ResNet-50 a b c d 5 10 15 20 25 SE +/- 0.08, N = 3 19.87 19.45 19.61 19.81
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream a b c d 6 12 18 24 30 SE +/- 0.05, N = 3 26.84 26.65 26.67 26.69
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream a b c d 5 10 15 20 25 SE +/- 0.01, N = 3 18.39 18.33 18.36 18.40
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c d 150 300 450 600 750 SE +/- 0.83, N = 3 685.12 681.00 683.25 681.53
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream a b c d 40 80 120 160 200 SE +/- 0.65, N = 3 189.91 193.11 192.98 189.27
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream a b c d 70 140 210 280 350 SE +/- 0.13, N = 3 307.01 304.77 306.50 305.86
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream a b c d 30 60 90 120 150 SE +/- 0.26, N = 3 157.23 155.48 155.40 155.20
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c d 400 800 1200 1600 2000 SE +/- 10.49, N = 3 2012.21 1962.70 1970.61 1962.16
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream a b c d 170 340 510 680 850 SE +/- 1.33, N = 3 757.16 752.78 765.99 757.27
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream a b c d 30 60 90 120 150 SE +/- 0.36, N = 3 150.04 148.24 148.76 149.27
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream a b c d 20 40 60 80 100 SE +/- 0.09, N = 3 98.52 98.56 98.65 98.77
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream a b c d 8 16 24 32 40 SE +/- 0.05, N = 3 32.52 32.36 32.42 32.38
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream a b c d 4 8 12 16 20 SE +/- 0.02, N = 3 17.16 17.13 17.24 17.12
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream a b c d 70 140 210 280 350 SE +/- 0.76, N = 3 306.99 305.38 306.52 299.83
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream a b c d 30 60 90 120 150 SE +/- 0.08, N = 3 156.97 155.54 155.62 155.19
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c d 30 60 90 120 150 SE +/- 0.01, N = 3 151.47 149.78 149.95 149.76
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream a b c d 20 40 60 80 100 SE +/- 0.29, N = 3 98.91 98.75 98.50 98.89
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream a b c d 50 100 150 200 250 SE +/- 0.12, N = 3 224.18 221.71 223.05 222.72
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream a b c d 30 60 90 120 150 SE +/- 0.26, N = 3 112.09 111.29 111.59 111.50
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream a b c d 7 14 21 28 35 SE +/- 0.02, N = 3 30.49 30.28 30.45 30.32
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream a b c d 5 10 15 20 25 SE +/- 0.05, N = 3 21.73 21.47 21.69 21.67
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c d 70 140 210 280 350 SE +/- 0.44, N = 3 335.35 333.37 333.64 334.64
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream a b c d 20 40 60 80 100 SE +/- 0.14, N = 3 76.14 75.51 75.99 75.71
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream a b c d 6 12 18 24 30 SE +/- 0.03, N = 3 26.91 26.67 26.71 26.54
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream a b c d 5 10 15 20 25 SE +/- 0.01, N = 3 18.47 18.40 18.46 18.44
CacheBench Test: Read OpenBenchmarking.org MB/s, More Is Better CacheBench Test: Read a b c d 2K 4K 6K 8K 10K SE +/- 0.09, N = 3 11543.37 11543.16 11543.10 11543.49 MIN: 11542.37 / MAX: 11544.55 MIN: 11542.65 / MAX: 11544.48 MIN: 11542.7 / MAX: 11543.41 MIN: 11542.8 / MAX: 11544.64 1. (CC) gcc options: -O3 -lrt
CacheBench Test: Write OpenBenchmarking.org MB/s, More Is Better CacheBench Test: Write a b c d 15K 30K 45K 60K 75K SE +/- 3.29, N = 3 69134.68 69140.53 69142.44 69142.19 MIN: 68881.15 / MAX: 69208.76 MIN: 68883.98 / MAX: 69225.86 MIN: 68884.8 / MAX: 69218.23 MIN: 68886.61 / MAX: 69217.36 1. (CC) gcc options: -O3 -lrt
CacheBench Test: Read / Modify / Write OpenBenchmarking.org MB/s, More Is Better CacheBench Test: Read / Modify / Write a b c d 30K 60K 90K 120K 150K SE +/- 386.79, N = 3 130857.58 130069.85 130806.25 130851.31 MIN: 112608.55 / MAX: 137126.28 MIN: 101861.72 / MAX: 137133.31 MIN: 112724.52 / MAX: 137125.96 MIN: 112492.8 / MAX: 137124.99 1. (CC) gcc options: -O3 -lrt
LZ4 Compression Compression Level: 1 - Compression Speed OpenBenchmarking.org MB/s, More Is Better LZ4 Compression 1.9.4 Compression Level: 1 - Compression Speed a b c d 200 400 600 800 1000 SE +/- 0.63, N = 3 828.78 829.36 829.15 830.37 1. (CC) gcc options: -O3
LZ4 Compression Compression Level: 1 - Decompression Speed OpenBenchmarking.org MB/s, More Is Better LZ4 Compression 1.9.4 Compression Level: 1 - Decompression Speed a b c d 1100 2200 3300 4400 5500 SE +/- 1.42, N = 3 5019.5 5020.0 5023.2 5019.5 1. (CC) gcc options: -O3
LZ4 Compression Compression Level: 3 - Compression Speed OpenBenchmarking.org MB/s, More Is Better LZ4 Compression 1.9.4 Compression Level: 3 - Compression Speed a b c d 30 60 90 120 150 SE +/- 0.30, N = 3 131.24 131.10 131.40 131.61 1. (CC) gcc options: -O3
LZ4 Compression Compression Level: 3 - Decompression Speed OpenBenchmarking.org MB/s, More Is Better LZ4 Compression 1.9.4 Compression Level: 3 - Decompression Speed a b c d 1000 2000 3000 4000 5000 SE +/- 0.63, N = 3 4595.9 4597.9 4598.0 4596.7 1. (CC) gcc options: -O3
LZ4 Compression Compression Level: 9 - Compression Speed OpenBenchmarking.org MB/s, More Is Better LZ4 Compression 1.9.4 Compression Level: 9 - Compression Speed a b c d 10 20 30 40 50 SE +/- 0.02, N = 3 44.28 44.48 45.49 44.52 1. (CC) gcc options: -O3
LZ4 Compression Compression Level: 9 - Decompression Speed OpenBenchmarking.org MB/s, More Is Better LZ4 Compression 1.9.4 Compression Level: 9 - Decompression Speed a b c d 1000 2000 3000 4000 5000 SE +/- 1.12, N = 3 4840.5 4841.4 4842.4 4844.5 1. (CC) gcc options: -O3
LeelaChessZero Backend: BLAS OpenBenchmarking.org Nodes Per Second, More Is Better LeelaChessZero 0.30 Backend: BLAS a b c d 50 100 150 200 250 SE +/- 0.33, N = 3 173 219 225 213 1. (CXX) g++ options: -flto -pthread
LeelaChessZero Backend: Eigen OpenBenchmarking.org Nodes Per Second, More Is Better LeelaChessZero 0.30 Backend: Eigen a b c d 30 60 90 120 150 SE +/- 2.08, N = 3 121 146 154 151 1. (CXX) g++ options: -flto -pthread
Speedb Test: Random Fill OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Random Fill a b c d 120K 240K 360K 480K 600K SE +/- 4227.88, N = 3 558330 554997 557348 556675 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
Speedb Test: Random Read OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Random Read a b c d 30M 60M 90M 120M 150M SE +/- 81483.06, N = 3 148134848 147432214 146285738 146473036 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
Speedb Test: Update Random OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Update Random a b c d 90K 180K 270K 360K 450K SE +/- 4060.59, N = 3 431692 418848 423788 417457 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
Speedb Test: Sequential Fill OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Sequential Fill a b c d 130K 260K 390K 520K 650K SE +/- 3239.87, N = 3 620607 618776 604758 612428 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
Speedb Test: Random Fill Sync OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Random Fill Sync a b c d 10K 20K 30K 40K 50K SE +/- 66.17, N = 3 47488 47708 47373 47267 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
Speedb Test: Read While Writing OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Read While Writing a b c d 1.5M 3M 4.5M 6M 7.5M SE +/- 60887.57, N = 3 7004007 7070407 7047502 6896007 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
Speedb Test: Read Random Write Random OpenBenchmarking.org Op/s, More Is Better Speedb 2.7 Test: Read Random Write Random a b c d 500K 1000K 1500K 2000K 2500K SE +/- 1258.96, N = 3 2327911 2307686 2320670 2316804 1. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread
Llama.cpp Model: llama-2-7b.Q4_0.gguf OpenBenchmarking.org Tokens Per Second, More Is Better Llama.cpp b1808 Model: llama-2-7b.Q4_0.gguf a b c d 5 10 15 20 25 SE +/- 0.24, N = 4 20.76 20.95 20.74 20.68 1. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas
Llama.cpp Model: llama-2-13b.Q4_0.gguf OpenBenchmarking.org Tokens Per Second, More Is Better Llama.cpp b1808 Model: llama-2-13b.Q4_0.gguf a b c d 3 6 9 12 15 SE +/- 0.06, N = 3 11.64 11.32 11.27 11.25 1. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas
Llama.cpp Model: llama-2-70b-chat.Q5_0.gguf OpenBenchmarking.org Tokens Per Second, More Is Better Llama.cpp b1808 Model: llama-2-70b-chat.Q5_0.gguf a b c d 0.4388 0.8776 1.3164 1.7552 2.194 SE +/- 0.00, N = 3 1.94 1.94 1.95 1.95 1. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas
Llamafile Test: llava-v1.5-7b-q4 - Acceleration: CPU OpenBenchmarking.org Tokens Per Second, More Is Better Llamafile 0.6 Test: llava-v1.5-7b-q4 - Acceleration: CPU a b c d 4 8 12 16 20 SE +/- 0.01, N = 3 17.22 17.26 17.30 17.25
Llamafile Test: mistral-7b-instruct-v0.2.Q8_0 - Acceleration: CPU OpenBenchmarking.org Tokens Per Second, More Is Better Llamafile 0.6 Test: mistral-7b-instruct-v0.2.Q8_0 - Acceleration: CPU a b c d 3 6 9 12 15 SE +/- 0.01, N = 3 10.13 10.15 10.14 10.13
Llamafile Test: wizardcoder-python-34b-v1.0.Q6_K - Acceleration: CPU OpenBenchmarking.org Tokens Per Second, More Is Better Llamafile 0.6 Test: wizardcoder-python-34b-v1.0.Q6_K - Acceleration: CPU a b c d 0.7313 1.4626 2.1939 2.9252 3.6565 SE +/- 0.00, N = 3 3.25 3.25 3.25 3.25
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream a b c d 100 200 300 400 500 SE +/- 0.27, N = 3 446.63 448.91 449.30 449.16
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream a b c d 12 24 36 48 60 SE +/- 0.02, N = 3 54.37 54.54 54.46 54.35
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c d 4 8 12 16 20 SE +/- 0.02, N = 3 17.50 17.60 17.54 17.59
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream a b c d 1.1881 2.3762 3.5643 4.7524 5.9405 SE +/- 0.0173, N = 3 5.2624 5.1753 5.1787 5.2804
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream a b c d 9 18 27 36 45 SE +/- 0.01, N = 3 39.04 39.33 39.12 39.19
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream a b c d 2 4 6 8 10 SE +/- 0.0106, N = 3 6.3518 6.4230 6.4266 6.4345
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c d 2 4 6 8 10 SE +/- 0.0329, N = 3 5.9507 6.1010 6.0747 6.1024
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream a b c d 0.2982 0.5964 0.8946 1.1928 1.491 SE +/- 0.0024, N = 3 1.3175 1.3252 1.3025 1.3175
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream a b c d 20 40 60 80 100 SE +/- 0.20, N = 3 79.89 80.85 80.57 80.27
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream a b c d 3 6 9 12 15 SE +/- 0.01, N = 3 10.14 10.14 10.13 10.12
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream a b c d 80 160 240 320 400 SE +/- 0.27, N = 3 368.31 369.77 369.62 369.53
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream a b c d 13 26 39 52 65 SE +/- 0.07, N = 3 58.25 58.35 58.00 58.41
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream a b c d 9 18 27 36 45 SE +/- 0.09, N = 3 39.05 39.26 39.12 39.98
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream a b c d 2 4 6 8 10 SE +/- 0.0037, N = 3 6.3619 6.4208 6.4178 6.4346
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c d 20 40 60 80 100 SE +/- 0.02, N = 3 79.16 80.05 79.89 80.05
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream a b c d 3 6 9 12 15 SE +/- 0.03, N = 3 10.10 10.12 10.15 10.11
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream a b c d 12 24 36 48 60 SE +/- 0.03, N = 3 53.47 54.06 53.74 53.82
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream a b c d 3 6 9 12 15 SE +/- 0.0211, N = 3 8.9109 8.9755 8.9520 8.9586
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream a b c d 90 180 270 360 450 SE +/- 0.41, N = 3 392.96 394.78 393.83 394.38
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream a b c d 11 22 33 44 55 SE +/- 0.12, N = 3 46.00 46.55 46.09 46.13
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c d 8 16 24 32 40 SE +/- 0.05, N = 3 35.76 35.97 35.93 35.84
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream a b c d 3 6 9 12 15 SE +/- 0.02, N = 3 13.13 13.24 13.15 13.20
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream a b c d 100 200 300 400 500 SE +/- 0.32, N = 3 445.26 448.04 448.90 448.03
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream a b c d 12 24 36 48 60 SE +/- 0.03, N = 3 54.12 54.33 54.15 54.20
Y-Cruncher Pi Digits To Calculate: 1B OpenBenchmarking.org Seconds, Fewer Is Better Y-Cruncher 0.8.3 Pi Digits To Calculate: 1B a b c d 4 8 12 16 20 SE +/- 0.01, N = 3 15.55 15.50 15.53 15.50
Y-Cruncher Pi Digits To Calculate: 500M OpenBenchmarking.org Seconds, Fewer Is Better Y-Cruncher 0.8.3 Pi Digits To Calculate: 500M a b c d 2 4 6 8 10 SE +/- 0.007, N = 3 7.325 7.349 7.301 7.297
Phoronix Test Suite v10.8.5