tgldec Tests for a future article. Intel Core i7-1185G7 testing with a Dell 0DXP1F (3.7.0 BIOS) and Intel Xe TGL GT2 15GB on Ubuntu 22.04 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2312224-PTS-TGLDEC9288&sro&grt .
tgldec Processor Motherboard Chipset Memory Disk Graphics Audio Network OS Kernel Desktop Display Server OpenGL OpenCL Vulkan Compiler File-System Screen Resolution a b Intel Core i7-1185G7 @ 4.80GHz (4 Cores / 8 Threads) Dell 0DXP1F (3.7.0 BIOS) Intel Tiger Lake-LP 16GB Micron 2300 NVMe 512GB Intel Xe TGL GT2 15GB (1350MHz) Realtek ALC289 Intel Wi-Fi 6 AX201 Ubuntu 22.04 6.2.0-36-generic (x86_64) GNOME Shell 42.2 X Server + Wayland 4.6 Mesa 22.0.1 OpenCL 3.0 1.3.204 GCC 11.4.0 ext4 1920x1200 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0xb4 - Thermald 2.4.9 Java Details - OpenJDK Runtime Environment (build 11.0.20.1+1-post-Ubuntu-0ubuntu122.04) Python Details - Python 3.10.12 Security Details - gather_data_sampling: Mitigation of Microcode + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Not affected + tsx_async_abort: Not affected
tgldec lczero: BLAS lczero: Eigen deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream scylladb: Writes svt-av1: Preset 4 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 4K svt-av1: Preset 12 - Bosphorus 4K svt-av1: Preset 13 - Bosphorus 4K svt-av1: Preset 4 - Bosphorus 1080p svt-av1: Preset 8 - Bosphorus 1080p svt-av1: Preset 12 - Bosphorus 1080p svt-av1: Preset 13 - Bosphorus 1080p xmrig: KawPow - 1M xmrig: Monero - 1M xmrig: Wownero - 1M xmrig: GhostRider - 1M xmrig: CryptoNight-Heavy - 1M xmrig: CryptoNight-Femto UPX2 - 1M a b 61 51 3.9165 510.1389 127.083 15.7028 54.4523 36.6899 307.9229 6.467 22.1762 90.1433 4.3093 463.8923 54.2106 36.8572 22.285 89.7187 29.973 66.6604 6.6146 302.3134 55.5425 35.9636 3.7221 537.2767 42920 1.382 11.352 43.029 43.944 5.332 37.936 194.342 287.019 1908.5 1904.9 2646.2 405.3 1921.1 1902.6 62 52 3.8826 514.3343 126.7496 15.7456 54.5005 36.6402 307.5055 6.476 23.4406 85.2818 4.3051 461.7999 53.7709 37.1625 22.9344 87.1754 29.3696 68.0028 6.62 302.07 55.3026 36.1024 3.6422 544.8737 46001 1.376 11.359 41.469 44.422 5.449 42.174 222.463 285.677 1911.1 1912.9 2647.7 443.1 1913.4 1907.9 OpenBenchmarking.org
LeelaChessZero Backend: BLAS OpenBenchmarking.org Nodes Per Second, More Is Better LeelaChessZero 0.30 Backend: BLAS a b 14 28 42 56 70 61 62 1. (CXX) g++ options: -flto -pthread
LeelaChessZero Backend: Eigen OpenBenchmarking.org Nodes Per Second, More Is Better LeelaChessZero 0.30 Backend: Eigen a b 12 24 36 48 60 51 52 1. (CXX) g++ options: -flto -pthread
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream a b 0.8812 1.7624 2.6436 3.5248 4.406 3.9165 3.8826
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream a b 110 220 330 440 550 510.14 514.33
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 30 60 90 120 150 127.08 126.75
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 4 8 12 16 20 15.70 15.75
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream a b 12 24 36 48 60 54.45 54.50
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream a b 8 16 24 32 40 36.69 36.64
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 70 140 210 280 350 307.92 307.51
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 2 4 6 8 10 6.467 6.476
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream a b 6 12 18 24 30 22.18 23.44
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream a b 20 40 60 80 100 90.14 85.28
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream a b 0.9696 1.9392 2.9088 3.8784 4.848 4.3093 4.3051
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream a b 100 200 300 400 500 463.89 461.80
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream a b 12 24 36 48 60 54.21 53.77
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream a b 9 18 27 36 45 36.86 37.16
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 5 10 15 20 25 22.29 22.93
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 20 40 60 80 100 89.72 87.18
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream a b 7 14 21 28 35 29.97 29.37
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream a b 15 30 45 60 75 66.66 68.00
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream a b 2 4 6 8 10 6.6146 6.6200
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream a b 70 140 210 280 350 302.31 302.07
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 12 24 36 48 60 55.54 55.30
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b 8 16 24 32 40 35.96 36.10
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.6 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream a b 0.8375 1.675 2.5125 3.35 4.1875 3.7221 3.6422
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.6 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream a b 120 240 360 480 600 537.28 544.87
ScyllaDB Test: Writes OpenBenchmarking.org Op/s, More Is Better ScyllaDB 5.2.9 Test: Writes a b 10K 20K 30K 40K 50K 42920 46001
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 4 - Input: Bosphorus 4K a b 0.311 0.622 0.933 1.244 1.555 1.382 1.376 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 8 - Input: Bosphorus 4K a b 3 6 9 12 15 11.35 11.36 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 12 - Input: Bosphorus 4K a b 10 20 30 40 50 43.03 41.47 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 13 - Input: Bosphorus 4K a b 10 20 30 40 50 43.94 44.42 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 4 - Input: Bosphorus 1080p a b 1.226 2.452 3.678 4.904 6.13 5.332 5.449 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 8 - Input: Bosphorus 1080p a b 10 20 30 40 50 37.94 42.17 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 12 - Input: Bosphorus 1080p a b 50 100 150 200 250 194.34 222.46 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.8 Encoder Mode: Preset 13 - Input: Bosphorus 1080p a b 60 120 180 240 300 287.02 285.68 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
Xmrig Variant: KawPow - Hash Count: 1M OpenBenchmarking.org H/s, More Is Better Xmrig 6.21 Variant: KawPow - Hash Count: 1M a b 400 800 1200 1600 2000 1908.5 1911.1 1. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc
Xmrig Variant: Monero - Hash Count: 1M OpenBenchmarking.org H/s, More Is Better Xmrig 6.21 Variant: Monero - Hash Count: 1M a b 400 800 1200 1600 2000 1904.9 1912.9 1. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc
Xmrig Variant: Wownero - Hash Count: 1M OpenBenchmarking.org H/s, More Is Better Xmrig 6.21 Variant: Wownero - Hash Count: 1M a b 600 1200 1800 2400 3000 2646.2 2647.7 1. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc
Xmrig Variant: GhostRider - Hash Count: 1M OpenBenchmarking.org H/s, More Is Better Xmrig 6.21 Variant: GhostRider - Hash Count: 1M a b 100 200 300 400 500 405.3 443.1 1. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc
Xmrig Variant: CryptoNight-Heavy - Hash Count: 1M OpenBenchmarking.org H/s, More Is Better Xmrig 6.21 Variant: CryptoNight-Heavy - Hash Count: 1M a b 400 800 1200 1600 2000 1921.1 1913.4 1. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc
Xmrig Variant: CryptoNight-Femto UPX2 - Hash Count: 1M OpenBenchmarking.org H/s, More Is Better Xmrig 6.21 Variant: CryptoNight-Femto UPX2 - Hash Count: 1M a b 400 800 1200 1600 2000 1902.6 1907.9 1. (CXX) g++ options: -fexceptions -fno-rtti -maes -O3 -Ofast -static-libgcc -static-libstdc++ -rdynamic -lssl -lcrypto -luv -lpthread -lrt -ldl -lhwloc
Phoronix Test Suite v10.8.5