h510-i310100-1

Intel Core i3-10100 testing with a ASRock H510M-HVS (P1.60 BIOS) and Intel UHD 630 CML GT2 3GB on Ubuntu 20.04 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2312018-HERT-H510I3137&grr.

h510-i310100-1ProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionIntel UHD 630 CML GT2Intel Core i3-10100 @ 4.30GHz (4 Cores / 8 Threads)ASRock H510M-HVS (P1.60 BIOS)Intel Device 43ef3584MB1000GB Western Digital WDS100T2B0AIntel UHD 630 CML GT2 3GB (1100MHz)Realtek ALC897G185BGEL01Realtek RTL8111/8168/8411Ubuntu 20.045.15.0-88-generic (x86_64)GNOME Shell 3.36.9X Server 1.20.134.6 Mesa 21.2.61.2.182GCC 9.4.0ext41368x768OpenBenchmarking.org- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-9-9QDOt0/gcc-9-9.4.0/debian/tmp-nvptx/usr,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0xf8 - Thermald 1.9.1 - Python 3.8.10- gather_data_sampling: Mitigation of Microcode + itlb_multihit: KVM: Mitigation of VMX disabled + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Mitigation of Clear buffers; SMT vulnerable + retbleed: Mitigation of Enhanced IBRS + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Mitigation of Microcode + tsx_async_abort: Not affected

h510-i310100-1tensorflow: CPU - 64 - VGG-16tensorflow: CPU - 256 - GoogLeNetwhisper-cpp: ggml-medium.en - 2016 State of the Uniontensorflow: CPU - 64 - ResNet-50tensorflow: CPU - 32 - ResNet-50scikit-learn: Sparse Rand Projections / 100 Iterationstensorflow: CPU - 32 - VGG-16tensorflow: CPU - 16 - VGG-16caffe: GoogleNet - CPU - 1000tensorflow: CPU - 512 - AlexNetscikit-learn: GLMscikit-learn: SAGApytorch: CPU - 16 - ResNet-152whisper-cpp: ggml-small.en - 2016 State of the Unionscikit-learn: Kernel PCA Solvers / Time vs. N Componentsplaidml: No - Inference - VGG16 - CPUtensorflow: CPU - 256 - AlexNetscikit-learn: Plot Neighborspytorch: CPU - 16 - Efficientnet_v2_lscikit-learn: Lassoscikit-learn: Covertype Dataset Benchmarkpytorch: CPU - 256 - Efficientnet_v2_lpytorch: CPU - 512 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lpytorch: CPU - 32 - Efficientnet_v2_lscikit-learn: Hist Gradient Boosting Higgs Bosonpytorch: CPU - 32 - ResNet-152caffe: AlexNet - CPU - 1000plaidml: No - Inference - ResNet 50 - CPUpytorch: CPU - 1 - ResNet-152scikit-learn: TSNE MNIST Datasettensorflow: CPU - 64 - GoogLeNetscikit-learn: Kernel PCA Solvers / Time vs. N Samplespytorch: CPU - 512 - ResNet-152pytorch: CPU - 256 - ResNet-152pytorch: CPU - 64 - ResNet-152scikit-learn: Hist Gradient Boosting Threadingscikit-learn: Plot Lasso Pathtensorflow: CPU - 16 - ResNet-50onnx: super-resolution-10 - CPU - Parallelonnx: super-resolution-10 - CPU - Parallelscikit-learn: Plot Singular Value Decompositionwhisper-cpp: ggml-base.en - 2016 State of the Unionnumenta-nab: KNN CADnumenta-nab: Earthgecko Skylineonnx: fcn-resnet101-11 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Parallelscikit-learn: Plot Polynomial Kernel Approximationlczero: BLASscikit-learn: Plot Hierarchicalmnn: inception-v3mnn: mobilenet-v1-1.0mnn: MobileNetV2_224mnn: SqueezeNetV1.0mnn: resnet-v2-50mnn: squeezenetv1.1mnn: mobilenetV3mnn: nasnettensorflow: CPU - 32 - GoogLeNetcaffe: GoogleNet - CPU - 200tnn: CPU - DenseNetscikit-learn: Feature Expansionsscikit-learn: Plot OMP vs. LARSpytorch: CPU - 1 - Efficientnet_v2_lpytorch: CPU - 32 - ResNet-50pytorch: CPU - 16 - ResNet-50pytorch: CPU - 64 - ResNet-50pytorch: CPU - 256 - ResNet-50scikit-learn: Treepytorch: CPU - 512 - ResNet-50tensorflow: CPU - 64 - AlexNetscikit-learn: Hist Gradient Boostingscikit-learn: SGD Regressionopencv: DNN - Deep Neural Networkncnn: Vulkan GPU - FastestDetncnn: Vulkan GPU - vision_transformerncnn: Vulkan GPU - regnety_400mncnn: Vulkan GPU - squeezenet_ssdncnn: Vulkan GPU - yolov4-tinyncnn: Vulkan GPU - resnet50ncnn: Vulkan GPU - alexnetncnn: Vulkan GPU - resnet18ncnn: Vulkan GPU - vgg16ncnn: Vulkan GPU - googlenetncnn: Vulkan GPU - blazefacencnn: Vulkan GPU - efficientnet-b0ncnn: Vulkan GPU - mnasnetncnn: Vulkan GPU - shufflenet-v2ncnn: Vulkan GPU-v3-v3 - mobilenet-v3ncnn: Vulkan GPU-v2-v2 - mobilenet-v2ncnn: Vulkan GPU - mobilenetncnn: CPU - FastestDetncnn: CPU - vision_transformerncnn: CPU - regnety_400mncnn: CPU - squeezenet_ssdncnn: CPU - yolov4-tinyncnn: CPU - resnet50ncnn: CPU - alexnetncnn: CPU - resnet18ncnn: CPU - vgg16ncnn: CPU - googlenetncnn: CPU - blazefacencnn: CPU - efficientnet-b0ncnn: CPU - mnasnetncnn: CPU - shufflenet-v2ncnn: CPU-v3-v3 - mobilenet-v3ncnn: CPU-v2-v2 - mobilenet-v2ncnn: CPU - mobilenetnumpy: deepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamscikit-learn: 20 Newsgroups / Logistic Regressionscikit-learn: Sample Without Replacementdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Streamscikit-learn: LocalOutlierFactortensorflow: CPU - 16 - GoogLeNetcaffe: GoogleNet - CPU - 100scikit-learn: Sparsifycaffe: AlexNet - CPU - 200tensorflow: CPU - 32 - AlexNetscikit-learn: Hist Gradient Boosting Adultnumenta-nab: Bayesian Changepointonednn: Recurrent Neural Network Training - bf16bf16bf16 - CPUonednn: Recurrent Neural Network Training - u8s8f32 - CPUonednn: Recurrent Neural Network Training - f32 - CPUscikit-learn: Plot Wardscikit-learn: MNIST Datasetonednn: Recurrent Neural Network Inference - f32 - CPUonednn: Recurrent Neural Network Inference - u8s8f32 - CPUonednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPUscikit-learn: Text Vectorizersnumenta-nab: Contextual Anomaly Detector OSEonnx: fcn-resnet101-11 - CPU - Standardonnx: fcn-resnet101-11 - CPU - Standardonednn: Deconvolution Batch shapes_1d - f32 - CPUonnx: bertsquad-12 - CPU - Parallelonnx: bertsquad-12 - CPU - Parallelonnx: GPT-2 - CPU - Parallelonnx: GPT-2 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Parallelonnx: GPT-2 - CPU - Standardonnx: GPT-2 - CPU - Standardonnx: bertsquad-12 - CPU - Standardonnx: bertsquad-12 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: super-resolution-10 - CPU - Standardonnx: super-resolution-10 - CPU - Standardpytorch: CPU - 1 - ResNet-50mlpack: scikit_icadeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamtensorflow: CPU - 16 - AlexNetdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepspeech: CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUscikit-learn: Plot Incremental PCAopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUcaffe: AlexNet - CPU - 100openvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUnumenta-nab: Relative Entropyopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUtensorflow-lite: Inception V4openvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUtensorflow-lite: Inception ResNet V2openvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUtensorflow-lite: NASNet Mobiletensorflow-lite: Mobilenet Floattensorflow-lite: SqueezeNetopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUtensorflow-lite: Mobilenet Quantopenvino: Handwritten English Recognition FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamscikit-learn: Hist Gradient Boosting Categorical Onlymlpack: scikit_svmrbenchmark: rnnoise: tnn: CPU - MobileNet v2tnn: CPU - SqueezeNet v1.1onednn: Deconvolution Batch shapes_1d - u8s8f32 - CPUnumenta-nab: Windowed Gaussianonednn: IP Shapes 1D - f32 - CPUonednn: IP Shapes 1D - u8s8f32 - CPUonednn: IP Shapes 3D - f32 - CPUonednn: IP Shapes 3D - u8s8f32 - CPUonednn: Convolution Batch Shapes Auto - f32 - CPUonednn: Convolution Batch Shapes Auto - u8s8f32 - CPUonednn: Deconvolution Batch shapes_3d - u8s8f32 - CPUtnn: CPU - SqueezeNet v2onednn: Deconvolution Batch shapes_3d - f32 - CPUonednn: IP Shapes 1D - bf16bf16bf16 - CPUIntel UHD 630 CML GT21.054.844481.68871.742.951736.4641.581.85154636736.831042.3441013.7943.411335.20634355.1866.0936.80174.8332.21560.618556.1322.252.272.272.27170.7383.426622663.375.99467.52911.50430.9173.403.443.50361.508357.7303.8435.375928.3302330.978419.51049401.286395.7342437.660.414443275.141147256.95257.6605.8915.7689.36449.7504.1322.14115.10111.453093674010.894195.642191.9984.436.936.957.077.1345.3297.1332.89158.501152.300406146.02169.3210.3125.9759.6051.5118.1222.04148.8326.110.9913.916.773.186.5510.9040.456.06168.9710.2826.0259.4751.4618.0822.09148.3926.080.9713.846.753.176.5310.9040.47326.47479.27674.168425.933838.586262.132137.887239.75214.1704127.75911.17154104100.83213113628.1294.914126.12910350.710313.910295.882.99482.1516656.386632.546626.1474.60999.6451740.740.57447710.4377255.5513.9137822.295744.8421101.0659.8947120.991747.6451190.6165.24740252.1993.96508313.4813.1899770.857814.11397.16796139.5016.30439158.58816.738259.745713.177675.885123.419742.697212.8284.7362.308132.085521.6531.818131.4184106.1269639.27101.8154.0713660.461.09654901829.802.1839.532502.327.96502.357.96390.3110.2498713.2103.3538.69388.2210.3088427.746.5685.8917768.75753.917050.2683.8447.696821.92101.7239.3010.31387.4391.9243.4938.99102.5228.95138.0418.58215.060.944197.732.041937.85506.56503.9479269.94143.704329.765167.1308675.68802.9599683.26622.927015.614164.0102345.08082.8978347.38022.878672.546027.561041.470924.108753.011418.8617106.136718.841353.606218.6499103.565219.305747.735341.868945.631743.809625.127039.78278.1295245.34094.4891222.301723.30325.550.267525.322346.037313.9654.3492918.36712.78183.1015532.19265.5006159.666752.10497.8871470.17215.0626OpenBenchmarking.org

TensorFlow

Device: CPU - Batch Size: 64 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: VGG-16Intel UHD 630 CML GT20.23630.47260.70890.94521.1815SE +/- 0.01, N = 31.05

TensorFlow

Device: CPU - Batch Size: 256 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 256 - Model: GoogLeNetIntel UHD 630 CML GT21.0892.1783.2674.3565.445SE +/- 0.06, N = 34.84

Whisper.cpp

Model: ggml-medium.en - Input: 2016 State of the Union

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.4Model: ggml-medium.en - Input: 2016 State of the UnionIntel UHD 630 CML GT210002000300040005000SE +/- 15.31, N = 34481.691. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread

TensorFlow

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: ResNet-50Intel UHD 630 CML GT20.39150.7831.17451.5661.9575SE +/- 0.05, N = 31.74

TensorFlow

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: ResNet-50Intel UHD 630 CML GT20.66381.32761.99142.65523.319SE +/- 0.07, N = 92.95

Scikit-Learn

Benchmark: Sparse Random Projections / 100 Iterations

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sparse Random Projections / 100 IterationsIntel UHD 630 CML GT2400800120016002000SE +/- 18.11, N = 51736.461. (F9X) gfortran options: -O0

TensorFlow

Device: CPU - Batch Size: 32 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: VGG-16Intel UHD 630 CML GT20.35550.7111.06651.4221.7775SE +/- 0.02, N = 41.58

TensorFlow

Device: CPU - Batch Size: 16 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: VGG-16Intel UHD 630 CML GT20.41630.83261.24891.66522.0815SE +/- 0.02, N = 91.85

Caffe

Model: GoogleNet - Acceleration: CPU - Iterations: 1000

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 1000Intel UHD 630 CML GT2300K600K900K1200K1500KSE +/- 1702.77, N = 315463671. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

TensorFlow

Device: CPU - Batch Size: 512 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 512 - Model: AlexNetIntel UHD 630 CML GT2816243240SE +/- 0.19, N = 336.83

Scikit-Learn

Benchmark: GLM

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: GLMIntel UHD 630 CML GT22004006008001000SE +/- 5.27, N = 31042.341. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: SAGA

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SAGAIntel UHD 630 CML GT22004006008001000SE +/- 1.13, N = 31013.791. (F9X) gfortran options: -O0

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-152Intel UHD 630 CML GT20.76731.53462.30193.06923.8365SE +/- 0.03, N = 83.41MIN: 2.68 / MAX: 3.64

Whisper.cpp

Model: ggml-small.en - Input: 2016 State of the Union

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.4Model: ggml-small.en - Input: 2016 State of the UnionIntel UHD 630 CML GT230060090012001500SE +/- 1.20, N = 31335.211. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread

Scikit-Learn

Benchmark: Kernel PCA Solvers / Time vs. N Components

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N ComponentsIntel UHD 630 CML GT280160240320400SE +/- 5.16, N = 9355.191. (F9X) gfortran options: -O0

PlaidML

FP16: No - Mode: Inference - Network: VGG16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterPlaidMLFP16: No - Mode: Inference - Network: VGG16 - Device: CPUIntel UHD 630 CML GT2246810SE +/- 0.08, N = 96.09

TensorFlow

Device: CPU - Batch Size: 256 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 256 - Model: AlexNetIntel UHD 630 CML GT2816243240SE +/- 0.05, N = 336.80

Scikit-Learn

Benchmark: Plot Neighbors

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot NeighborsIntel UHD 630 CML GT24080120160200SE +/- 1.47, N = 12174.831. (F9X) gfortran options: -O0

PyTorch

Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lIntel UHD 630 CML GT20.49730.99461.49191.98922.4865SE +/- 0.01, N = 32.21MIN: 1.47 / MAX: 2.26

Scikit-Learn

Benchmark: Lasso

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: LassoIntel UHD 630 CML GT2120240360480600SE +/- 0.60, N = 3560.621. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Covertype Dataset Benchmark

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Covertype Dataset BenchmarkIntel UHD 630 CML GT2120240360480600SE +/- 0.59, N = 3556.131. (F9X) gfortran options: -O0

PyTorch

Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_lIntel UHD 630 CML GT20.50631.01261.51892.02522.5315SE +/- 0.01, N = 32.25MIN: 2.07 / MAX: 2.3

PyTorch

Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_lIntel UHD 630 CML GT20.51081.02161.53242.04322.554SE +/- 0.01, N = 32.27MIN: 2.1 / MAX: 2.3

PyTorch

Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_lIntel UHD 630 CML GT20.51081.02161.53242.04322.554SE +/- 0.00, N = 32.27MIN: 2.11 / MAX: 2.32

PyTorch

Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_lIntel UHD 630 CML GT20.51081.02161.53242.04322.554SE +/- 0.00, N = 32.27MIN: 1.95 / MAX: 2.32

Scikit-Learn

Benchmark: Hist Gradient Boosting Higgs Boson

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Higgs BosonIntel UHD 630 CML GT24080120160200SE +/- 21.85, N = 12170.741. (F9X) gfortran options: -O0

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: ResNet-152Intel UHD 630 CML GT20.76951.5392.30853.0783.8475SE +/- 0.04, N = 43.42MIN: 2.62 / MAX: 3.57

Caffe

Model: AlexNet - Acceleration: CPU - Iterations: 1000

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 1000Intel UHD 630 CML GT2140K280K420K560K700KSE +/- 715.63, N = 36622661. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

PlaidML

FP16: No - Mode: Inference - Network: ResNet 50 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterPlaidMLFP16: No - Mode: Inference - Network: ResNet 50 - Device: CPUIntel UHD 630 CML GT20.75831.51662.27493.03323.7915SE +/- 0.01, N = 33.37

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-152Intel UHD 630 CML GT21.34782.69564.04345.39126.739SE +/- 0.05, N = 105.99MIN: 4.82 / MAX: 6.56

Scikit-Learn

Benchmark: TSNE MNIST Dataset

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: TSNE MNIST DatasetIntel UHD 630 CML GT2100200300400500SE +/- 0.75, N = 3467.531. (F9X) gfortran options: -O0

TensorFlow

Device: CPU - Batch Size: 64 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: GoogLeNetIntel UHD 630 CML GT23691215SE +/- 0.01, N = 311.50

Scikit-Learn

Benchmark: Kernel PCA Solvers / Time vs. N Samples

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N SamplesIntel UHD 630 CML GT290180270360450SE +/- 0.55, N = 3430.921. (F9X) gfortran options: -O0

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: ResNet-152Intel UHD 630 CML GT20.7651.532.2953.063.825SE +/- 0.01, N = 33.40MIN: 3.22 / MAX: 3.54

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-152Intel UHD 630 CML GT20.7741.5482.3223.0963.87SE +/- 0.01, N = 33.44MIN: 3.25 / MAX: 3.54

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: ResNet-152Intel UHD 630 CML GT20.78751.5752.36253.153.9375SE +/- 0.01, N = 33.50MIN: 3.08 / MAX: 3.55

Scikit-Learn

Benchmark: Hist Gradient Boosting Threading

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting ThreadingIntel UHD 630 CML GT280160240320400SE +/- 3.09, N = 3361.511. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Plot Lasso Path

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Lasso PathIntel UHD 630 CML GT280160240320400SE +/- 0.82, N = 3357.731. (F9X) gfortran options: -O0

TensorFlow

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: ResNet-50Intel UHD 630 CML GT20.8641.7282.5923.4564.32SE +/- 0.00, N = 33.84

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: super-resolution-10 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT2816243240SE +/- 0.46, N = 1535.381. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: super-resolution-10 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT2714212835SE +/- 0.35, N = 1528.331. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Scikit-Learn

Benchmark: Plot Singular Value Decomposition

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Singular Value DecompositionIntel UHD 630 CML GT270140210280350SE +/- 2.13, N = 3330.981. (F9X) gfortran options: -O0

Whisper.cpp

Model: ggml-base.en - Input: 2016 State of the Union

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.4Model: ggml-base.en - Input: 2016 State of the UnionIntel UHD 630 CML GT290180270360450SE +/- 0.30, N = 3419.511. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread

Numenta Anomaly Benchmark

Detector: KNN CAD

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: KNN CADIntel UHD 630 CML GT290180270360450SE +/- 5.44, N = 3401.29

Numenta Anomaly Benchmark

Detector: Earthgecko Skyline

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Earthgecko SkylineIntel UHD 630 CML GT290180270360450SE +/- 1.84, N = 3395.73

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: fcn-resnet101-11 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT25001000150020002500SE +/- 71.32, N = 122437.661. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: fcn-resnet101-11 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT20.09320.18640.27960.37280.466SE +/- 0.013144, N = 120.4144431. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

Scikit-Learn

Benchmark: Plot Polynomial Kernel Approximation

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Polynomial Kernel ApproximationIntel UHD 630 CML GT260120180240300SE +/- 0.84, N = 3275.141. (F9X) gfortran options: -O0

LeelaChessZero

Backend: BLAS

OpenBenchmarking.orgNodes Per Second, More Is BetterLeelaChessZero 0.28Backend: BLASIntel UHD 630 CML GT2306090120150SE +/- 0.88, N = 31471. (CXX) g++ options: -flto -pthread

Scikit-Learn

Benchmark: Plot Hierarchical

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot HierarchicalIntel UHD 630 CML GT260120180240300SE +/- 0.29, N = 3256.951. (F9X) gfortran options: -O0

Mobile Neural Network

Model: inception-v3

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: inception-v3Intel UHD 630 CML GT21326395265SE +/- 0.28, N = 357.66MIN: 56.01 / MAX: 109.591. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: mobilenet-v1-1.0

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: mobilenet-v1-1.0Intel UHD 630 CML GT21.32552.6513.97655.3026.6275SE +/- 0.046, N = 35.891MIN: 5.66 / MAX: 19.271. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: MobileNetV2_224

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: MobileNetV2_224Intel UHD 630 CML GT21.29782.59563.89345.19126.489SE +/- 0.045, N = 35.768MIN: 5.61 / MAX: 20.211. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: SqueezeNetV1.0

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: SqueezeNetV1.0Intel UHD 630 CML GT23691215SE +/- 0.061, N = 39.364MIN: 9.14 / MAX: 23.051. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: resnet-v2-50

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: resnet-v2-50Intel UHD 630 CML GT21122334455SE +/- 0.11, N = 349.75MIN: 49.05 / MAX: 64.841. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: squeezenetv1.1

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: squeezenetv1.1Intel UHD 630 CML GT20.92971.85942.78913.71884.6485SE +/- 0.035, N = 34.132MIN: 4.01 / MAX: 6.941. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: mobilenetV3

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: mobilenetV3Intel UHD 630 CML GT20.48170.96341.44511.92682.4085SE +/- 0.024, N = 32.141MIN: 2.04 / MAX: 9.881. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

Mobile Neural Network

Model: nasnet

OpenBenchmarking.orgms, Fewer Is BetterMobile Neural Network 2.1Model: nasnetIntel UHD 630 CML GT248121620SE +/- 0.12, N = 315.10MIN: 13.64 / MAX: 29.771. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl

TensorFlow

Device: CPU - Batch Size: 32 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: GoogLeNetIntel UHD 630 CML GT23691215SE +/- 0.00, N = 311.45

Caffe

Model: GoogleNet - Acceleration: CPU - Iterations: 200

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 200Intel UHD 630 CML GT270K140K210K280K350KSE +/- 632.99, N = 33093671. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

TNN

Target: CPU - Model: DenseNet

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: DenseNetIntel UHD 630 CML GT29001800270036004500SE +/- 9.20, N = 34010.89MIN: 3963.22 / MAX: 4047.461. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

Scikit-Learn

Benchmark: Feature Expansions

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Feature ExpansionsIntel UHD 630 CML GT24080120160200SE +/- 0.21, N = 3195.641. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Plot OMP vs. LARS

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot OMP vs. LARSIntel UHD 630 CML GT24080120160200SE +/- 0.03, N = 3192.001. (F9X) gfortran options: -O0

PyTorch

Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_lIntel UHD 630 CML GT20.99681.99362.99043.98724.984SE +/- 0.04, N = 34.43MIN: 3.87 / MAX: 4.55

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: ResNet-50Intel UHD 630 CML GT2246810SE +/- 0.03, N = 36.93MIN: 6.1 / MAX: 7.05

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-50Intel UHD 630 CML GT2246810SE +/- 0.05, N = 36.95MIN: 5.81 / MAX: 7.09

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: ResNet-50Intel UHD 630 CML GT2246810SE +/- 0.03, N = 37.07MIN: 5.87 / MAX: 7.19

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-50Intel UHD 630 CML GT2246810SE +/- 0.03, N = 37.13MIN: 5.96 / MAX: 7.25

Scikit-Learn

Benchmark: Tree

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: TreeIntel UHD 630 CML GT21020304050SE +/- 0.47, N = 1545.331. (F9X) gfortran options: -O0

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: ResNet-50Intel UHD 630 CML GT2246810SE +/- 0.03, N = 37.13MIN: 6.8 / MAX: 7.27

TensorFlow

Device: CPU - Batch Size: 64 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: AlexNetIntel UHD 630 CML GT2816243240SE +/- 0.04, N = 332.89

Scikit-Learn

Benchmark: Hist Gradient Boosting

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient BoostingIntel UHD 630 CML GT24080120160200SE +/- 0.13, N = 3158.501. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: SGD Regression

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SGD RegressionIntel UHD 630 CML GT2306090120150SE +/- 1.35, N = 3152.301. (F9X) gfortran options: -O0

OpenCV

Test: DNN - Deep Neural Network

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: DNN - Deep Neural NetworkIntel UHD 630 CML GT29K18K27K36K45KSE +/- 453.54, N = 15406141. (CXX) g++ options: -fPIC -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -shared

NCNN

Target: Vulkan GPU - Model: FastestDet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: FastestDetIntel UHD 630 CML GT2246810SE +/- 0.03, N = 36.02MIN: 5.87 / MAX: 17.391. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: vision_transformer

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vision_transformerIntel UHD 630 CML GT24080120160200SE +/- 1.11, N = 3169.32MIN: 167 / MAX: 180.911. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: regnety_400m

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: regnety_400mIntel UHD 630 CML GT23691215SE +/- 0.02, N = 310.31MIN: 10.21 / MAX: 12.721. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: squeezenet_ssd

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: squeezenet_ssdIntel UHD 630 CML GT2612182430SE +/- 0.06, N = 325.97MIN: 25.51 / MAX: 26.551. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: yolov4-tiny

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: yolov4-tinyIntel UHD 630 CML GT21326395265SE +/- 0.04, N = 359.60MIN: 59.31 / MAX: 69.651. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: resnet50

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet50Intel UHD 630 CML GT21224364860SE +/- 0.08, N = 351.51MIN: 50.97 / MAX: 62.631. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: alexnet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: alexnetIntel UHD 630 CML GT248121620SE +/- 0.01, N = 318.12MIN: 17.95 / MAX: 27.161. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: resnet18

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: resnet18Intel UHD 630 CML GT2510152025SE +/- 0.05, N = 322.04MIN: 21.78 / MAX: 33.271. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: vgg16

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: vgg16Intel UHD 630 CML GT2306090120150SE +/- 0.09, N = 3148.83MIN: 147.68 / MAX: 188.041. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: googlenet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: googlenetIntel UHD 630 CML GT2612182430SE +/- 0.04, N = 326.11MIN: 25.89 / MAX: 29.341. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: blazeface

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: blazefaceIntel UHD 630 CML GT20.22280.44560.66840.89121.114SE +/- 0.01, N = 30.99MIN: 0.94 / MAX: 1.051. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: efficientnet-b0

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: efficientnet-b0Intel UHD 630 CML GT248121620SE +/- 0.04, N = 313.91MIN: 13.62 / MAX: 24.61. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: mnasnet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mnasnetIntel UHD 630 CML GT2246810SE +/- 0.02, N = 36.77MIN: 6.6 / MAX: 7.261. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: shufflenet-v2

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: shufflenet-v2Intel UHD 630 CML GT20.71551.4312.14652.8623.5775SE +/- 0.00, N = 33.18MIN: 3.13 / MAX: 4.351. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3Intel UHD 630 CML GT2246810SE +/- 0.03, N = 36.55MIN: 6.4 / MAX: 8.281. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2Intel UHD 630 CML GT23691215SE +/- 0.02, N = 310.90MIN: 10.73 / MAX: 12.951. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: Vulkan GPU - Model: mobilenet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: Vulkan GPU - Model: mobilenetIntel UHD 630 CML GT2918273645SE +/- 0.10, N = 340.45MIN: 40.09 / MAX: 42.181. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: FastestDet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: FastestDetIntel UHD 630 CML GT2246810SE +/- 0.06, N = 36.06MIN: 5.87 / MAX: 15.581. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: vision_transformer

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vision_transformerIntel UHD 630 CML GT24080120160200SE +/- 0.79, N = 3168.97MIN: 166.92 / MAX: 2911. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: regnety_400m

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: regnety_400mIntel UHD 630 CML GT23691215SE +/- 0.01, N = 310.28MIN: 10.19 / MAX: 12.41. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: squeezenet_ssd

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: squeezenet_ssdIntel UHD 630 CML GT2612182430SE +/- 0.06, N = 326.02MIN: 25.58 / MAX: 30.461. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: yolov4-tiny

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: yolov4-tinyIntel UHD 630 CML GT21326395265SE +/- 0.06, N = 359.47MIN: 59.15 / MAX: 62.391. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: resnet50

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet50Intel UHD 630 CML GT21224364860SE +/- 0.03, N = 351.46MIN: 51.1 / MAX: 62.091. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: alexnet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: alexnetIntel UHD 630 CML GT248121620SE +/- 0.01, N = 318.08MIN: 17.91 / MAX: 19.651. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: resnet18

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: resnet18Intel UHD 630 CML GT2510152025SE +/- 0.03, N = 322.09MIN: 21.88 / MAX: 24.411. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: vgg16

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: vgg16Intel UHD 630 CML GT2306090120150SE +/- 0.17, N = 3148.39MIN: 147.62 / MAX: 159.261. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: googlenet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: googlenetIntel UHD 630 CML GT2612182430SE +/- 0.13, N = 326.08MIN: 25.8 / MAX: 37.671. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: blazeface

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: blazefaceIntel UHD 630 CML GT20.21830.43660.65490.87321.0915SE +/- 0.01, N = 30.97MIN: 0.92 / MAX: 1.051. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: efficientnet-b0

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: efficientnet-b0Intel UHD 630 CML GT248121620SE +/- 0.07, N = 313.84MIN: 13.52 / MAX: 16.261. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: mnasnet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mnasnetIntel UHD 630 CML GT2246810SE +/- 0.03, N = 36.75MIN: 6.55 / MAX: 7.031. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: shufflenet-v2

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: shufflenet-v2Intel UHD 630 CML GT20.71331.42662.13992.85323.5665SE +/- 0.01, N = 33.17MIN: 3.11 / MAX: 3.281. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU-v3-v3 - Model: mobilenet-v3

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v3-v3 - Model: mobilenet-v3Intel UHD 630 CML GT2246810SE +/- 0.03, N = 36.53MIN: 6.38 / MAX: 8.231. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU-v2-v2 - Model: mobilenet-v2

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU-v2-v2 - Model: mobilenet-v2Intel UHD 630 CML GT23691215SE +/- 0.06, N = 310.90MIN: 10.69 / MAX: 21.481. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

NCNN

Target: CPU - Model: mobilenet

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20230517Target: CPU - Model: mobilenetIntel UHD 630 CML GT2918273645SE +/- 0.09, N = 340.47MIN: 40.08 / MAX: 83.251. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

Numpy Benchmark

OpenBenchmarking.orgScore, More Is BetterNumpy BenchmarkIntel UHD 630 CML GT270140210280350SE +/- 0.64, N = 3326.47

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2100200300400500SE +/- 1.38, N = 3479.28

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT20.93791.87582.81373.75164.6895SE +/- 0.0105, N = 34.1684

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Baseline - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2612182430SE +/- 0.23, N = 1525.93

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Baseline - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2918273645SE +/- 0.33, N = 1538.59

Scikit-Learn

Benchmark: 20 Newsgroups / Logistic Regression

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: 20 Newsgroups / Logistic RegressionIntel UHD 630 CML GT21428425670SE +/- 0.54, N = 862.131. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: Sample Without Replacement

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sample Without ReplacementIntel UHD 630 CML GT2306090120150SE +/- 1.51, N = 3137.891. (F9X) gfortran options: -O0

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT250100150200250SE +/- 0.87, N = 3239.75

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT20.93831.87662.81493.75324.6915SE +/- 0.0148, N = 34.1704

Scikit-Learn

Benchmark: LocalOutlierFactor

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: LocalOutlierFactorIntel UHD 630 CML GT2306090120150SE +/- 0.81, N = 3127.761. (F9X) gfortran options: -O0

TensorFlow

Device: CPU - Batch Size: 16 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: GoogLeNetIntel UHD 630 CML GT23691215SE +/- 0.00, N = 311.17

Caffe

Model: GoogleNet - Acceleration: CPU - Iterations: 100

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: GoogleNet - Acceleration: CPU - Iterations: 100Intel UHD 630 CML GT230K60K90K120K150KSE +/- 66.36, N = 31541041. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

Scikit-Learn

Benchmark: Sparsify

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SparsifyIntel UHD 630 CML GT220406080100SE +/- 0.10, N = 3100.831. (F9X) gfortran options: -O0

Caffe

Model: AlexNet - Acceleration: CPU - Iterations: 200

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 200Intel UHD 630 CML GT230K60K90K120K150KSE +/- 323.65, N = 31311361. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

TensorFlow

Device: CPU - Batch Size: 32 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: AlexNetIntel UHD 630 CML GT2714212835SE +/- 0.01, N = 328.12

Scikit-Learn

Benchmark: Hist Gradient Boosting Adult

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting AdultIntel UHD 630 CML GT220406080100SE +/- 0.28, N = 394.911. (F9X) gfortran options: -O0

Numenta Anomaly Benchmark

Detector: Bayesian Changepoint

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Bayesian ChangepointIntel UHD 630 CML GT2306090120150SE +/- 1.45, N = 3126.13

oneDNN

Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPUIntel UHD 630 CML GT22K4K6K8K10KSE +/- 29.88, N = 310350.7MIN: 10265.51. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT22K4K6K8K10KSE +/- 12.15, N = 310313.9MIN: 10251.11. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT22K4K6K8K10KSE +/- 31.02, N = 310295.8MIN: 10197.11. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

Scikit-Learn

Benchmark: Plot Ward

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot WardIntel UHD 630 CML GT220406080100SE +/- 0.13, N = 382.991. (F9X) gfortran options: -O0

Scikit-Learn

Benchmark: MNIST Dataset

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: MNIST DatasetIntel UHD 630 CML GT220406080100SE +/- 0.06, N = 382.151. (F9X) gfortran options: -O0

oneDNN

Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT214002800420056007000SE +/- 15.81, N = 36656.38MIN: 6584.31. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT214002800420056007000SE +/- 31.44, N = 36632.54MIN: 6538.671. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPUIntel UHD 630 CML GT214002800420056007000SE +/- 39.36, N = 36626.14MIN: 65141. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

Scikit-Learn

Benchmark: Text Vectorizers

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Text VectorizersIntel UHD 630 CML GT220406080100SE +/- 0.04, N = 374.611. (F9X) gfortran options: -O0

Numenta Anomaly Benchmark

Detector: Contextual Anomaly Detector OSE

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Contextual Anomaly Detector OSEIntel UHD 630 CML GT220406080100SE +/- 0.25, N = 399.65

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: fcn-resnet101-11 - Device: CPU - Executor: StandardIntel UHD 630 CML GT2400800120016002000SE +/- 4.88, N = 31740.741. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: fcn-resnet101-11 - Device: CPU - Executor: StandardIntel UHD 630 CML GT20.12930.25860.38790.51720.6465SE +/- 0.001607, N = 30.5744771. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

oneDNN

Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT23691215SE +/- 0.18, N = 1310.44MIN: 9.871. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: bertsquad-12 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT260120180240300SE +/- 2.43, N = 3255.551. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: bertsquad-12 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT20.88061.76122.64183.52244.403SE +/- 0.03748, N = 33.913781. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: GPT-2 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT2510152025SE +/- 0.01, N = 322.301. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: GPT-2 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT21020304050SE +/- 0.02, N = 344.841. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: ArcFace ResNet-100 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT220406080100SE +/- 0.36, N = 3101.071. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: ArcFace ResNet-100 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT23691215SE +/- 0.03496, N = 39.894711. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: GPT-2 - Device: CPU - Executor: StandardIntel UHD 630 CML GT2510152025SE +/- 0.29, N = 320.991. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: GPT-2 - Device: CPU - Executor: StandardIntel UHD 630 CML GT21122334455SE +/- 0.64, N = 347.651. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: bertsquad-12 - Device: CPU - Executor: StandardIntel UHD 630 CML GT24080120160200SE +/- 2.12, N = 3190.621. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: bertsquad-12 - Device: CPU - Executor: StandardIntel UHD 630 CML GT21.18072.36143.54214.72285.9035SE +/- 0.05913, N = 35.247401. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: StandardIntel UHD 630 CML GT260120180240300SE +/- 0.37, N = 3252.201. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: StandardIntel UHD 630 CML GT20.89211.78422.67633.56844.4605SE +/- 0.00587, N = 33.965081. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT270140210280350SE +/- 0.42, N = 3313.481. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT20.71771.43542.15312.87083.5885SE +/- 0.00431, N = 33.189971. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: ArcFace ResNet-100 - Device: CPU - Executor: StandardIntel UHD 630 CML GT21632486480SE +/- 0.51, N = 370.861. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: ArcFace ResNet-100 - Device: CPU - Executor: StandardIntel UHD 630 CML GT248121620SE +/- 0.10, N = 314.111. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: CaffeNet 12-int8 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT2246810SE +/- 0.06172, N = 37.167961. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: CaffeNet 12-int8 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT2306090120150SE +/- 1.19, N = 3139.501. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: CaffeNet 12-int8 - Device: CPU - Executor: StandardIntel UHD 630 CML GT2246810SE +/- 0.01316, N = 36.304391. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: CaffeNet 12-int8 - Device: CPU - Executor: StandardIntel UHD 630 CML GT24080120160200SE +/- 0.33, N = 3158.591. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: ResNet50 v1-12-int8 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT248121620SE +/- 0.13, N = 316.741. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: ResNet50 v1-12-int8 - Device: CPU - Executor: ParallelIntel UHD 630 CML GT21326395265SE +/- 0.48, N = 359.751. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: ResNet50 v1-12-int8 - Device: CPU - Executor: StandardIntel UHD 630 CML GT23691215SE +/- 0.09, N = 313.181. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: ResNet50 v1-12-int8 - Device: CPU - Executor: StandardIntel UHD 630 CML GT220406080100SE +/- 0.51, N = 375.891. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.14Model: super-resolution-10 - Device: CPU - Executor: StandardIntel UHD 630 CML GT2612182430SE +/- 0.11, N = 323.421. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.14Model: super-resolution-10 - Device: CPU - Executor: StandardIntel UHD 630 CML GT21020304050SE +/- 0.21, N = 342.701. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt -lpthread -pthread

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-50Intel UHD 630 CML GT23691215SE +/- 0.14, N = 312.82MIN: 11.44 / MAX: 13.27

Mlpack Benchmark

Benchmark: scikit_ica

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_icaIntel UHD 630 CML GT220406080100SE +/- 0.83, N = 384.73

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21428425670SE +/- 0.25, N = 362.31

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2714212835SE +/- 0.13, N = 332.09

TensorFlow

Device: CPU - Batch Size: 16 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: AlexNetIntel UHD 630 CML GT2510152025SE +/- 0.01, N = 321.65

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2714212835SE +/- 0.03, N = 331.82

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2714212835SE +/- 0.03, N = 331.42

DeepSpeech

Acceleration: CPU

OpenBenchmarking.orgSeconds, Fewer Is BetterDeepSpeech 0.6Acceleration: CPUIntel UHD 630 CML GT220406080100SE +/- 0.17, N = 3106.13

OpenVINO

Model: Vehicle Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Vehicle Detection FP16-INT8 - Device: CPUIntel UHD 630 CML GT2918273645SE +/- 0.47, N = 439.27MIN: 16.66 / MAX: 66.51. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Vehicle Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Vehicle Detection FP16-INT8 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 1.23, N = 4101.811. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Scikit-Learn

Benchmark: Plot Incremental PCA

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Incremental PCAIntel UHD 630 CML GT21224364860SE +/- 0.23, N = 354.071. (F9X) gfortran options: -O0

OpenVINO

Model: Face Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Face Detection FP16 - Device: CPUIntel UHD 630 CML GT28001600240032004000SE +/- 36.52, N = 33660.46MIN: 3432.69 / MAX: 4026.891. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Face Detection FP16 - Device: CPUIntel UHD 630 CML GT20.24530.49060.73590.98121.2265SE +/- 0.01, N = 31.091. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Caffe

Model: AlexNet - Acceleration: CPU - Iterations: 100

OpenBenchmarking.orgMilli-Seconds, Fewer Is BetterCaffe 2020-02-13Model: AlexNet - Acceleration: CPU - Iterations: 100Intel UHD 630 CML GT214K28K42K56K70KSE +/- 3.33, N = 3654901. (CXX) g++ options: -fPIC -O3 -rdynamic -lglog -lgflags -lprotobuf -lpthread -lsz -lz -ldl -lm -llmdb -lopenblas

OpenVINO

Model: Face Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Face Detection FP16-INT8 - Device: CPUIntel UHD 630 CML GT2400800120016002000SE +/- 17.01, N = 31829.80MIN: 1646.16 / MAX: 1966.521. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Face Detection FP16-INT8 - Device: CPUIntel UHD 630 CML GT20.49050.9811.47151.9622.4525SE +/- 0.02, N = 32.181. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Numenta Anomaly Benchmark

Detector: Relative Entropy

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Relative EntropyIntel UHD 630 CML GT2918273645SE +/- 0.41, N = 539.53

OpenVINO

Model: Person Detection FP32 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Person Detection FP32 - Device: CPUIntel UHD 630 CML GT2110220330440550SE +/- 0.10, N = 3502.32MIN: 458.24 / MAX: 574.971. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Detection FP32 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Person Detection FP32 - Device: CPUIntel UHD 630 CML GT2246810SE +/- 0.00, N = 37.961. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Person Detection FP16 - Device: CPUIntel UHD 630 CML GT2110220330440550SE +/- 1.06, N = 3502.35MIN: 452.28 / MAX: 549.571. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Person Detection FP16 - Device: CPUIntel UHD 630 CML GT2246810SE +/- 0.02, N = 37.961. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Machine Translation EN To DE FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Machine Translation EN To DE FP16 - Device: CPUIntel UHD 630 CML GT280160240320400SE +/- 2.90, N = 3390.31MIN: 182.4 / MAX: 427.671. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Machine Translation EN To DE FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Machine Translation EN To DE FP16 - Device: CPUIntel UHD 630 CML GT23691215SE +/- 0.08, N = 310.241. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

TensorFlow Lite

Model: Inception V4

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception V4Intel UHD 630 CML GT220K40K60K80K100KSE +/- 603.06, N = 398713.2

OpenVINO

Model: Road Segmentation ADAS FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Road Segmentation ADAS FP16-INT8 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 0.79, N = 3103.35MIN: 47.57 / MAX: 127.441. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Road Segmentation ADAS FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Road Segmentation ADAS FP16-INT8 - Device: CPUIntel UHD 630 CML GT2918273645SE +/- 0.30, N = 338.691. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Road Segmentation ADAS FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Road Segmentation ADAS FP16 - Device: CPUIntel UHD 630 CML GT280160240320400SE +/- 0.76, N = 3388.22MIN: 194.63 / MAX: 454.991. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Road Segmentation ADAS FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Road Segmentation ADAS FP16 - Device: CPUIntel UHD 630 CML GT23691215SE +/- 0.02, N = 310.301. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

TensorFlow Lite

Model: Inception ResNet V2

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception ResNet V2Intel UHD 630 CML GT220K40K60K80K100KSE +/- 773.95, N = 388427.7

OpenVINO

Model: Person Vehicle Bike Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Person Vehicle Bike Detection FP16 - Device: CPUIntel UHD 630 CML GT21122334455SE +/- 0.64, N = 346.56MIN: 25.67 / MAX: 86.31. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Vehicle Bike Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Person Vehicle Bike Detection FP16 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 1.16, N = 385.891. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

TensorFlow Lite

Model: NASNet Mobile

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: NASNet MobileIntel UHD 630 CML GT24K8K12K16K20KSE +/- 77.55, N = 317768.7

TensorFlow Lite

Model: Mobilenet Float

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet FloatIntel UHD 630 CML GT212002400360048006000SE +/- 51.68, N = 35753.91

TensorFlow Lite

Model: SqueezeNet

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: SqueezeNetIntel UHD 630 CML GT215003000450060007500SE +/- 76.69, N = 37050.26

OpenVINO

Model: Handwritten English Recognition FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Handwritten English Recognition FP16-INT8 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 0.53, N = 383.84MIN: 71.98 / MAX: 109.31. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Handwritten English Recognition FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Handwritten English Recognition FP16-INT8 - Device: CPUIntel UHD 630 CML GT21122334455SE +/- 0.31, N = 347.691. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

TensorFlow Lite

Model: Mobilenet Quant

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet QuantIntel UHD 630 CML GT215003000450060007500SE +/- 34.47, N = 36821.92

OpenVINO

Model: Handwritten English Recognition FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Handwritten English Recognition FP16 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 0.51, N = 3101.72MIN: 54.27 / MAX: 134.841. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Handwritten English Recognition FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Handwritten English Recognition FP16 - Device: CPUIntel UHD 630 CML GT2918273645SE +/- 0.20, N = 339.301. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Face Detection Retail FP16-INT8 - Device: CPUIntel UHD 630 CML GT23691215SE +/- 0.03, N = 310.31MIN: 6 / MAX: 27.841. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Face Detection Retail FP16-INT8 - Device: CPUIntel UHD 630 CML GT280160240320400SE +/- 1.31, N = 3387.431. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Vehicle Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Vehicle Detection FP16 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 0.12, N = 391.92MIN: 26.91 / MAX: 143.91. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Vehicle Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Vehicle Detection FP16 - Device: CPUIntel UHD 630 CML GT21020304050SE +/- 0.06, N = 343.491. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Weld Porosity Detection FP16 - Device: CPUIntel UHD 630 CML GT2918273645SE +/- 0.18, N = 338.99MIN: 21.94 / MAX: 59.771. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Weld Porosity Detection FP16 - Device: CPUIntel UHD 630 CML GT220406080100SE +/- 0.45, N = 3102.521. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Face Detection Retail FP16 - Device: CPUIntel UHD 630 CML GT2714212835SE +/- 0.18, N = 328.95MIN: 10.02 / MAX: 74.151. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Face Detection Retail FP16 - Device: CPUIntel UHD 630 CML GT2306090120150SE +/- 0.83, N = 3138.041. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Weld Porosity Detection FP16-INT8 - Device: CPUIntel UHD 630 CML GT2510152025SE +/- 0.22, N = 318.58MIN: 9.94 / MAX: 31.231. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Weld Porosity Detection FP16-INT8 - Device: CPUIntel UHD 630 CML GT250100150200250SE +/- 2.50, N = 3215.061. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUIntel UHD 630 CML GT20.21150.4230.63450.8461.0575SE +/- 0.01, N = 30.94MIN: 0.49 / MAX: 23.051. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUIntel UHD 630 CML GT29001800270036004500SE +/- 34.38, N = 34197.731. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2023.2.devModel: Age Gender Recognition Retail 0013 FP16 - Device: CPUIntel UHD 630 CML GT20.4590.9181.3771.8362.295SE +/- 0.01, N = 32.04MIN: 1.03 / MAX: 27.771. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2023.2.devModel: Age Gender Recognition Retail 0013 FP16 - Device: CPUIntel UHD 630 CML GT2400800120016002000SE +/- 5.88, N = 31937.851. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2110220330440550SE +/- 0.91, N = 3506.57

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT20.88831.77662.66493.55324.4415SE +/- 0.0071, N = 33.9479

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT260120180240300SE +/- 0.11, N = 3269.94

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT20.83351.6672.50053.3344.1675SE +/- 0.0016, N = 33.7043

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2714212835SE +/- 0.08, N = 329.77

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21530456075SE +/- 0.20, N = 367.13

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2150300450600750SE +/- 1.89, N = 3675.69

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT20.6661.3321.9982.6643.33SE +/- 0.0082, N = 32.9599

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2150300450600750SE +/- 1.08, N = 3683.27

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT20.65861.31721.97582.63443.293SE +/- 0.0047, N = 32.9270

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT248121620SE +/- 0.01, N = 315.61

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT21428425670SE +/- 0.03, N = 364.01

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT270140210280350SE +/- 1.06, N = 3345.08

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT20.6521.3041.9562.6083.26SE +/- 0.0089, N = 32.8978

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT280160240320400SE +/- 0.31, N = 3347.38

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT20.64771.29541.94312.59083.2385SE +/- 0.0025, N = 32.8786

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21632486480SE +/- 0.05, N = 372.55

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2612182430SE +/- 0.02, N = 327.56

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2918273645SE +/- 0.05, N = 341.47

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2612182430SE +/- 0.03, N = 324.11

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT21224364860SE +/- 0.35, N = 353.01

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2510152025SE +/- 0.12, N = 318.86

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT220406080100SE +/- 0.85, N = 3106.14

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2510152025SE +/- 0.15, N = 318.84

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT21224364860SE +/- 0.07, N = 353.61

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2510152025SE +/- 0.03, N = 318.65

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT220406080100SE +/- 0.30, N = 3103.57

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2510152025SE +/- 0.05, N = 319.31

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21122334455SE +/- 0.49, N = 347.74

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21020304050SE +/- 0.43, N = 341.87

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21020304050SE +/- 0.02, N = 345.63

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT21020304050SE +/- 0.02, N = 343.81

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2612182430SE +/- 0.01, N = 325.13

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT2918273645SE +/- 0.01, N = 339.78

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT2246810SE +/- 0.0070, N = 38.1295

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-StreamIntel UHD 630 CML GT250100150200250SE +/- 0.20, N = 3245.34

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT21.012.023.034.045.05SE +/- 0.0085, N = 34.4891

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-StreamIntel UHD 630 CML GT250100150200250SE +/- 0.42, N = 3222.30

Scikit-Learn

Benchmark: Hist Gradient Boosting Categorical Only

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Categorical OnlyIntel UHD 630 CML GT2612182430SE +/- 0.05, N = 323.301. (F9X) gfortran options: -O0

Mlpack Benchmark

Benchmark: scikit_svm

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_svmIntel UHD 630 CML GT2612182430SE +/- 0.07, N = 325.55

R Benchmark

OpenBenchmarking.orgSeconds, Fewer Is BetterR BenchmarkIntel UHD 630 CML GT20.06020.12040.18060.24080.301SE +/- 0.0005, N = 30.26751. R scripting front-end version 3.6.3 (2020-02-29)

RNNoise

OpenBenchmarking.orgSeconds, Fewer Is BetterRNNoise 2020-06-28Intel UHD 630 CML GT2612182430SE +/- 0.06, N = 325.321. (CC) gcc options: -O2 -pedantic -fvisibility=hidden

TNN

Target: CPU - Model: MobileNet v2

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: MobileNet v2Intel UHD 630 CML GT280160240320400SE +/- 0.51, N = 3346.04MIN: 343.36 / MAX: 348.141. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

TNN

Target: CPU - Model: SqueezeNet v1.1

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: SqueezeNet v1.1Intel UHD 630 CML GT270140210280350SE +/- 0.62, N = 3313.97MIN: 312.4 / MAX: 317.351. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

oneDNN

Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT20.97861.95722.93583.91444.893SE +/- 0.01766, N = 34.34929MIN: 4.261. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

Numenta Anomaly Benchmark

Detector: Windowed Gaussian

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Windowed GaussianIntel UHD 630 CML GT2510152025SE +/- 0.08, N = 318.37

oneDNN

Harness: IP Shapes 1D - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 1D - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT23691215SE +/- 0.03, N = 312.78MIN: 12.361. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT20.69781.39562.09342.79123.489SE +/- 0.00765, N = 33.10155MIN: 3.021. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: IP Shapes 3D - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 3D - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT2714212835SE +/- 0.10, N = 332.19MIN: 31.631. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT21.23762.47523.71284.95046.188SE +/- 0.02096, N = 35.50061MIN: 5.141. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT21326395265SE +/- 0.02, N = 359.67MIN: 59.021. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT21224364860SE +/- 0.03, N = 352.10MIN: 51.761. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

oneDNN

Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPUIntel UHD 630 CML GT2246810SE +/- 0.07881, N = 57.88714MIN: 7.61. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl

TNN

Target: CPU - Model: SqueezeNet v2

OpenBenchmarking.orgms, Fewer Is BetterTNN 0.3Target: CPU - Model: SqueezeNet v2Intel UHD 630 CML GT21632486480SE +/- 0.56, N = 370.17MIN: 68.98 / MAX: 71.711. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl

oneDNN

Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.3Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPUIntel UHD 630 CML GT248121620SE +/- 0.10, N = 315.06MIN: 14.671. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -lpthread -ldl


Phoronix Test Suite v10.8.5