m1test AMD Ryzen 5 7600X 6-Core testing with a ASUS TUF GAMING B650-PLUS WIFI (0823 BIOS) and Gigabyte NVIDIA GeForce RTX 4060 Ti 16GB on Ubuntu 22.04 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2307293-NE-M1TEST40932&gru .
m1test Processor Motherboard Chipset Memory Disk Graphics Audio Monitor Network OS Kernel Desktop Display Server Display Driver OpenGL OpenCL Vulkan Compiler File-System Screen Resolution firstmachinetest AMD Ryzen 5 7600X 6-Core @ 4.70GHz (6 Cores / 12 Threads) ASUS TUF GAMING B650-PLUS WIFI (0823 BIOS) AMD Device 14d8 32GB Western Digital WD_BLACK SN850X 2000GB Gigabyte NVIDIA GeForce RTX 4060 Ti 16GB NVIDIA Device 22bd DELL P2720DC Realtek RTL8125 2.5GbE + Realtek Device b852 Ubuntu 22.04 5.19.0-50-generic (x86_64) GNOME Shell 42.9 X Server 1.21.1.4 NVIDIA 535.86.05 4.6.0 OpenCL 3.0 CUDA 12.2.128 1.3.224 GCC 11.3.0 ext4 2560x1440 OpenBenchmarking.org - Transparent Huge Pages: madvise - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-aYxV0E/gcc-11-11.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-aYxV0E/gcc-11-11.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0xa601203 - BAR1 / Visible vRAM Size: 16384 MiB - vBIOS Version: 95.06.25.00.ac - GPU Compute Cores: 4352 - Python 3.10.6 - itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
m1test shoc: OpenCL - Triad shoc: OpenCL - Reduction shoc: OpenCL - Bus Speed Download shoc: OpenCL - Bus Speed Readback shoc: OpenCL - Texture Read Bandwidth shoc: OpenCL - S3D shoc: OpenCL - FFT SP shoc: OpenCL - GEMM SGEMM_N shoc: OpenCL - Max SP Flops shoc: OpenCL - MD5 Hash tensorflow: CPU - 16 - VGG-16 tensorflow: CPU - 32 - VGG-16 tensorflow: CPU - 64 - VGG-16 tensorflow: CPU - 16 - AlexNet tensorflow: CPU - 256 - VGG-16 tensorflow: CPU - 32 - AlexNet tensorflow: CPU - 64 - AlexNet tensorflow: CPU - 256 - AlexNet tensorflow: CPU - 512 - AlexNet tensorflow: CPU - 16 - GoogLeNet tensorflow: CPU - 16 - ResNet-50 tensorflow: CPU - 32 - GoogLeNet tensorflow: CPU - 32 - ResNet-50 tensorflow: CPU - 64 - GoogLeNet tensorflow: CPU - 64 - ResNet-50 tensorflow: CPU - 256 - GoogLeNet tensorflow: CPU - 256 - ResNet-50 tensorflow: CPU - 512 - GoogLeNet deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Asynchronous Multi-Stream deepsparse: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Synchronous Single-Stream deepsparse: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Asynchronous Multi-Stream deepsparse: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2 - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream lczero: BLAS numpy: ai-benchmark: Device Inference Score ai-benchmark: Device Training Score ai-benchmark: Device AI Score spacy: en_core_web_lg spacy: en_core_web_trf tensorflow-lite: SqueezeNet tensorflow-lite: Inception V4 tensorflow-lite: NASNet Mobile tensorflow-lite: Mobilenet Float tensorflow-lite: Mobilenet Quant tensorflow-lite: Inception ResNet V2 onednn: IP Shapes 1D - f32 - CPU onednn: IP Shapes 3D - f32 - CPU onednn: IP Shapes 1D - u8s8f32 - CPU onednn: IP Shapes 3D - u8s8f32 - CPU onednn: IP Shapes 1D - bf16bf16bf16 - CPU onednn: IP Shapes 3D - bf16bf16bf16 - CPU onednn: Convolution Batch Shapes Auto - f32 - CPU onednn: Deconvolution Batch shapes_1d - f32 - CPU onednn: Deconvolution Batch shapes_3d - f32 - CPU onednn: Convolution Batch Shapes Auto - u8s8f32 - CPU onednn: Deconvolution Batch shapes_1d - u8s8f32 - CPU onednn: Deconvolution Batch shapes_3d - u8s8f32 - CPU onednn: Recurrent Neural Network Training - f32 - CPU onednn: Recurrent Neural Network Inference - f32 - CPU onednn: Recurrent Neural Network Training - u8s8f32 - CPU onednn: Convolution Batch Shapes Auto - bf16bf16bf16 - CPU onednn: Deconvolution Batch shapes_1d - bf16bf16bf16 - CPU onednn: Deconvolution Batch shapes_3d - bf16bf16bf16 - CPU onednn: Recurrent Neural Network Inference - u8s8f32 - CPU onednn: Recurrent Neural Network Training - bf16bf16bf16 - CPU onednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPU mnn: nasnet mnn: mobilenetV3 mnn: squeezenetv1.1 mnn: resnet-v2-50 mnn: SqueezeNetV1.0 mnn: MobileNetV2_224 mnn: mobilenet-v1-1.0 mnn: inception-v3 ncnn: CPU - mobilenet ncnn: CPU-v2-v2 - mobilenet-v2 ncnn: CPU-v3-v3 - mobilenet-v3 ncnn: CPU - shufflenet-v2 ncnn: CPU - mnasnet ncnn: CPU - efficientnet-b0 ncnn: CPU - blazeface ncnn: CPU - googlenet ncnn: CPU - vgg16 ncnn: CPU - resnet18 ncnn: CPU - alexnet ncnn: CPU - resnet50 ncnn: CPU - yolov4-tiny ncnn: CPU - squeezenet_ssd ncnn: CPU - regnety_400m ncnn: CPU - vision_transformer ncnn: CPU - FastestDet ncnn: Vulkan GPU - mobilenet ncnn: Vulkan GPU-v2-v2 - mobilenet-v2 ncnn: Vulkan GPU-v3-v3 - mobilenet-v3 ncnn: Vulkan GPU - shufflenet-v2 ncnn: Vulkan GPU - mnasnet ncnn: Vulkan GPU - efficientnet-b0 ncnn: Vulkan GPU - blazeface ncnn: Vulkan GPU - googlenet ncnn: Vulkan GPU - vgg16 ncnn: Vulkan GPU - resnet18 ncnn: Vulkan GPU - alexnet ncnn: Vulkan GPU - resnet50 ncnn: Vulkan GPU - yolov4-tiny ncnn: Vulkan GPU - squeezenet_ssd ncnn: Vulkan GPU - regnety_400m ncnn: Vulkan GPU - vision_transformer ncnn: Vulkan GPU - FastestDet tnn: CPU - DenseNet tnn: CPU - MobileNet v2 tnn: CPU - SqueezeNet v2 tnn: CPU - SqueezeNet v1.1 opencv: DNN - Deep Neural Network deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Asynchronous Multi-Stream deepsparse: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Synchronous Single-Stream deepsparse: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Asynchronous Multi-Stream deepsparse: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering - Synchronous Single-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2 - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream deepspeech: CPU rnnoise: numenta-nab: KNN CAD numenta-nab: Relative Entropy numenta-nab: Windowed Gaussian numenta-nab: Earthgecko Skyline numenta-nab: Bayesian Changepoint numenta-nab: Contextual Anomaly Detector OSE mlpack: scikit_ica mlpack: scikit_qda mlpack: scikit_svm mlpack: scikit_linearridgeregression scikit-learn: Sparse Rand Projections / 100 Iterations firstmachinetest 12.9202 262.417 13.3754 13.1906 2697.61 167.736 726.046 6415.70 23395.7 25.9256 8.45 8.87 9.05 107.99 9.09 142.72 167.60 189.83 193.91 77.31 25.69 75.55 25.51 74.56 25.28 74.32 25.12 74.51 8.9503 8.9435 390.9266 280.5608 167.0395 125.5946 47.4217 45.0475 111.7964 84.0533 1259.3116 943.2536 50.0100 44.691 11.2486 9.5099 111.8935 84.0227 50.3374 45.3506 76.6235 68.5040 16.3173 16.1422 184.5994 118.6612 38.5969 34.8419 8.9483 8.9540 1383 807.43 1809 2496 4305 19413 1657 1920.44 29141.4 5368.28 1348.48 2942.86 26415.7 3.94237 4.97774 0.731267 1.11340 1.53228 2.99807 8.57521 5.27941 5.24738 8.33924 1.00945 1.30084 2835.96 1417.35 2834.98 3.73203 8.81665 3.12200 1414.69 2834.58 1415.38 5.894 0.759 1.388 11.920 2.477 1.689 2.797 16.040 7.25 1.93 1.48 1.52 1.56 2.69 0.5 5.98 29.96 6.28 4.69 11.87 13.21 10.37 4.58 113.91 1.86 10.70 3.33 3.83 2.54 3.41 7.92 1.05 9.07 68.87 8.74 18.29 20.12 19.79 13.11 4.46 719.18 3.06 2181.402 182.512 41.947 177.530 12915 335.1708 111.8071 7.6609 3.5599 17.9465 7.9561 63.2478 22.1914 26.8229 11.8910 2.3753 1.0581 59.9713 22.3672 266.6888 105.1478 26.7995 11.8952 59.5696 22.0448 39.1426 14.5927 183.8336 61.9364 16.2371 8.4159 77.7156 28.6962 335.2462 111.6776 45.23452 13.411 169.651 12.833 9.667 92.489 18.988 30.817 27.50 33.09 14.60 1.62 OpenBenchmarking.org
SHOC Scalable HeterOgeneous Computing Target: OpenCL - Benchmark: Triad OpenBenchmarking.org GB/s, More Is Better SHOC Scalable HeterOgeneous Computing 2020-04-17 Target: OpenCL - Benchmark: Triad firstmachinetest 3 6 9 12 15 SE +/- 0.02, N = 3 12.92 1. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi
SHOC Scalable HeterOgeneous Computing Target: OpenCL - Benchmark: Reduction OpenBenchmarking.org GB/s, More Is Better SHOC Scalable HeterOgeneous Computing 2020-04-17 Target: OpenCL - Benchmark: Reduction firstmachinetest 60 120 180 240 300 SE +/- 0.01, N = 3 262.42 1. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi
SHOC Scalable HeterOgeneous Computing Target: OpenCL - Benchmark: Bus Speed Download OpenBenchmarking.org GB/s, More Is Better SHOC Scalable HeterOgeneous Computing 2020-04-17 Target: OpenCL - Benchmark: Bus Speed Download firstmachinetest 3 6 9 12 15 SE +/- 0.00, N = 3 13.38 1. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi
SHOC Scalable HeterOgeneous Computing Target: OpenCL - Benchmark: Bus Speed Readback OpenBenchmarking.org GB/s, More Is Better SHOC Scalable HeterOgeneous Computing 2020-04-17 Target: OpenCL - Benchmark: Bus Speed Readback firstmachinetest 3 6 9 12 15 SE +/- 0.00, N = 3 13.19 1. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi
SHOC Scalable HeterOgeneous Computing Target: OpenCL - Benchmark: Texture Read Bandwidth OpenBenchmarking.org GB/s, More Is Better SHOC Scalable HeterOgeneous Computing 2020-04-17 Target: OpenCL - Benchmark: Texture Read Bandwidth firstmachinetest 600 1200 1800 2400 3000 SE +/- 1.89, N = 3 2697.61 1. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi
SHOC Scalable HeterOgeneous Computing Target: OpenCL - Benchmark: S3D OpenBenchmarking.org GFLOPS, More Is Better SHOC Scalable HeterOgeneous Computing 2020-04-17 Target: OpenCL - Benchmark: S3D firstmachinetest 40 80 120 160 200 SE +/- 0.11, N = 3 167.74 1. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi
SHOC Scalable HeterOgeneous Computing Target: OpenCL - Benchmark: FFT SP OpenBenchmarking.org GFLOPS, More Is Better SHOC Scalable HeterOgeneous Computing 2020-04-17 Target: OpenCL - Benchmark: FFT SP firstmachinetest 160 320 480 640 800 SE +/- 0.21, N = 3 726.05 1. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi
SHOC Scalable HeterOgeneous Computing Target: OpenCL - Benchmark: GEMM SGEMM_N OpenBenchmarking.org GFLOPS, More Is Better SHOC Scalable HeterOgeneous Computing 2020-04-17 Target: OpenCL - Benchmark: GEMM SGEMM_N firstmachinetest 1400 2800 4200 5600 7000 SE +/- 40.91, N = 3 6415.70 1. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi
SHOC Scalable HeterOgeneous Computing Target: OpenCL - Benchmark: Max SP Flops OpenBenchmarking.org GFLOPS, More Is Better SHOC Scalable HeterOgeneous Computing 2020-04-17 Target: OpenCL - Benchmark: Max SP Flops firstmachinetest 5K 10K 15K 20K 25K SE +/- 1.82, N = 3 23395.7 1. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi
SHOC Scalable HeterOgeneous Computing Target: OpenCL - Benchmark: MD5 Hash OpenBenchmarking.org GHash/s, More Is Better SHOC Scalable HeterOgeneous Computing 2020-04-17 Target: OpenCL - Benchmark: MD5 Hash firstmachinetest 6 12 18 24 30 SE +/- 0.00, N = 3 25.93 1. (CXX) g++ options: -O2 -lSHOCCommonMPI -lSHOCCommonOpenCL -lSHOCCommon -lOpenCL -lrt -lmpi_cxx -lmpi
TensorFlow Device: CPU - Batch Size: 16 - Model: VGG-16 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 16 - Model: VGG-16 firstmachinetest 2 4 6 8 10 SE +/- 0.01, N = 3 8.45
TensorFlow Device: CPU - Batch Size: 32 - Model: VGG-16 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 32 - Model: VGG-16 firstmachinetest 2 4 6 8 10 SE +/- 0.01, N = 3 8.87
TensorFlow Device: CPU - Batch Size: 64 - Model: VGG-16 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 64 - Model: VGG-16 firstmachinetest 3 6 9 12 15 SE +/- 0.00, N = 3 9.05
TensorFlow Device: CPU - Batch Size: 16 - Model: AlexNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 16 - Model: AlexNet firstmachinetest 20 40 60 80 100 SE +/- 0.06, N = 3 107.99
TensorFlow Device: CPU - Batch Size: 256 - Model: VGG-16 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 256 - Model: VGG-16 firstmachinetest 3 6 9 12 15 SE +/- 0.00, N = 3 9.09
TensorFlow Device: CPU - Batch Size: 32 - Model: AlexNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 32 - Model: AlexNet firstmachinetest 30 60 90 120 150 SE +/- 0.15, N = 3 142.72
TensorFlow Device: CPU - Batch Size: 64 - Model: AlexNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 64 - Model: AlexNet firstmachinetest 40 80 120 160 200 SE +/- 0.18, N = 3 167.60
TensorFlow Device: CPU - Batch Size: 256 - Model: AlexNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 256 - Model: AlexNet firstmachinetest 40 80 120 160 200 SE +/- 0.06, N = 3 189.83
TensorFlow Device: CPU - Batch Size: 512 - Model: AlexNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 512 - Model: AlexNet firstmachinetest 40 80 120 160 200 SE +/- 0.03, N = 3 193.91
TensorFlow Device: CPU - Batch Size: 16 - Model: GoogLeNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 16 - Model: GoogLeNet firstmachinetest 20 40 60 80 100 SE +/- 0.05, N = 3 77.31
TensorFlow Device: CPU - Batch Size: 16 - Model: ResNet-50 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 16 - Model: ResNet-50 firstmachinetest 6 12 18 24 30 SE +/- 0.00, N = 3 25.69
TensorFlow Device: CPU - Batch Size: 32 - Model: GoogLeNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 32 - Model: GoogLeNet firstmachinetest 20 40 60 80 100 SE +/- 0.04, N = 3 75.55
TensorFlow Device: CPU - Batch Size: 32 - Model: ResNet-50 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 32 - Model: ResNet-50 firstmachinetest 6 12 18 24 30 SE +/- 0.01, N = 3 25.51
TensorFlow Device: CPU - Batch Size: 64 - Model: GoogLeNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 64 - Model: GoogLeNet firstmachinetest 20 40 60 80 100 SE +/- 0.02, N = 3 74.56
TensorFlow Device: CPU - Batch Size: 64 - Model: ResNet-50 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 64 - Model: ResNet-50 firstmachinetest 6 12 18 24 30 SE +/- 0.01, N = 3 25.28
TensorFlow Device: CPU - Batch Size: 256 - Model: GoogLeNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 256 - Model: GoogLeNet firstmachinetest 20 40 60 80 100 SE +/- 0.09, N = 3 74.32
TensorFlow Device: CPU - Batch Size: 256 - Model: ResNet-50 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 256 - Model: ResNet-50 firstmachinetest 6 12 18 24 30 SE +/- 0.01, N = 3 25.12
TensorFlow Device: CPU - Batch Size: 512 - Model: GoogLeNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.12 Device: CPU - Batch Size: 512 - Model: GoogLeNet firstmachinetest 20 40 60 80 100 SE +/- 0.03, N = 3 74.51
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream firstmachinetest 3 6 9 12 15 SE +/- 0.0058, N = 3 8.9503
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream firstmachinetest 2 4 6 8 10 SE +/- 0.0065, N = 3 8.9435
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream firstmachinetest 80 160 240 320 400 SE +/- 0.49, N = 3 390.93
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream firstmachinetest 60 120 180 240 300 SE +/- 0.93, N = 3 280.56
Neural Magic DeepSparse Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Asynchronous Multi-Stream firstmachinetest 40 80 120 160 200 SE +/- 0.17, N = 3 167.04
Neural Magic DeepSparse Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Synchronous Single-Stream firstmachinetest 30 60 90 120 150 SE +/- 0.25, N = 3 125.59
Neural Magic DeepSparse Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Asynchronous Multi-Stream firstmachinetest 11 22 33 44 55 SE +/- 0.05, N = 3 47.42
Neural Magic DeepSparse Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Synchronous Single-Stream firstmachinetest 10 20 30 40 50 SE +/- 0.09, N = 3 45.05
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream firstmachinetest 30 60 90 120 150 SE +/- 0.08, N = 3 111.80
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream firstmachinetest 20 40 60 80 100 SE +/- 0.16, N = 3 84.05
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream firstmachinetest 300 600 900 1200 1500 SE +/- 1.91, N = 3 1259.31
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream firstmachinetest 200 400 600 800 1000 SE +/- 1.92, N = 3 943.25
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream firstmachinetest 11 22 33 44 55 SE +/- 0.29, N = 3 50.01
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream firstmachinetest 10 20 30 40 50 SE +/- 0.01, N = 3 44.69
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream firstmachinetest 3 6 9 12 15 SE +/- 0.01, N = 3 11.25
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream firstmachinetest 3 6 9 12 15 SE +/- 0.0022, N = 3 9.5099
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream firstmachinetest 30 60 90 120 150 SE +/- 0.03, N = 3 111.89
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream firstmachinetest 20 40 60 80 100 SE +/- 0.08, N = 3 84.02
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream firstmachinetest 11 22 33 44 55 SE +/- 0.19, N = 3 50.34
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream firstmachinetest 10 20 30 40 50 SE +/- 0.02, N = 3 45.35
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream firstmachinetest 20 40 60 80 100 SE +/- 0.07, N = 3 76.62
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream firstmachinetest 15 30 45 60 75 SE +/- 0.06, N = 3 68.50
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream firstmachinetest 4 8 12 16 20 SE +/- 0.01, N = 3 16.32
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream firstmachinetest 4 8 12 16 20 SE +/- 0.01, N = 3 16.14
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream firstmachinetest 40 80 120 160 200 SE +/- 0.24, N = 3 184.60
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream firstmachinetest 30 60 90 120 150 SE +/- 0.11, N = 3 118.66
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Asynchronous Multi-Stream firstmachinetest 9 18 27 36 45 SE +/- 0.01, N = 3 38.60
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Synchronous Single-Stream firstmachinetest 8 16 24 32 40 SE +/- 0.01, N = 3 34.84
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream firstmachinetest 2 4 6 8 10 SE +/- 0.0017, N = 3 8.9483
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.5 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream firstmachinetest 3 6 9 12 15 SE +/- 0.0039, N = 3 8.9540
LeelaChessZero Backend: BLAS OpenBenchmarking.org Nodes Per Second, More Is Better LeelaChessZero 0.28 Backend: BLAS firstmachinetest 300 600 900 1200 1500 SE +/- 14.53, N = 3 1383 1. (CXX) g++ options: -flto -pthread
Numpy Benchmark OpenBenchmarking.org Score, More Is Better Numpy Benchmark firstmachinetest 200 400 600 800 1000 SE +/- 0.92, N = 3 807.43
AI Benchmark Alpha Device Inference Score OpenBenchmarking.org Score, More Is Better AI Benchmark Alpha 0.1.2 Device Inference Score firstmachinetest 400 800 1200 1600 2000 1809
AI Benchmark Alpha Device Training Score OpenBenchmarking.org Score, More Is Better AI Benchmark Alpha 0.1.2 Device Training Score firstmachinetest 500 1000 1500 2000 2500 2496
AI Benchmark Alpha Device AI Score OpenBenchmarking.org Score, More Is Better AI Benchmark Alpha 0.1.2 Device AI Score firstmachinetest 900 1800 2700 3600 4500 4305
spaCy Model: en_core_web_lg OpenBenchmarking.org tokens/sec, More Is Better spaCy 3.4.1 Model: en_core_web_lg firstmachinetest 4K 8K 12K 16K 20K SE +/- 42.55, N = 3 19413
spaCy Model: en_core_web_trf OpenBenchmarking.org tokens/sec, More Is Better spaCy 3.4.1 Model: en_core_web_trf firstmachinetest 400 800 1200 1600 2000 SE +/- 0.33, N = 3 1657
TensorFlow Lite Model: SqueezeNet OpenBenchmarking.org Microseconds, Fewer Is Better TensorFlow Lite 2022-05-18 Model: SqueezeNet firstmachinetest 400 800 1200 1600 2000 SE +/- 1.99, N = 3 1920.44
TensorFlow Lite Model: Inception V4 OpenBenchmarking.org Microseconds, Fewer Is Better TensorFlow Lite 2022-05-18 Model: Inception V4 firstmachinetest 6K 12K 18K 24K 30K SE +/- 8.55, N = 3 29141.4
TensorFlow Lite Model: NASNet Mobile OpenBenchmarking.org Microseconds, Fewer Is Better TensorFlow Lite 2022-05-18 Model: NASNet Mobile firstmachinetest 1200 2400 3600 4800 6000 SE +/- 4.80, N = 3 5368.28
TensorFlow Lite Model: Mobilenet Float OpenBenchmarking.org Microseconds, Fewer Is Better TensorFlow Lite 2022-05-18 Model: Mobilenet Float firstmachinetest 300 600 900 1200 1500 SE +/- 1.14, N = 3 1348.48
TensorFlow Lite Model: Mobilenet Quant OpenBenchmarking.org Microseconds, Fewer Is Better TensorFlow Lite 2022-05-18 Model: Mobilenet Quant firstmachinetest 600 1200 1800 2400 3000 SE +/- 23.86, N = 9 2942.86
TensorFlow Lite Model: Inception ResNet V2 OpenBenchmarking.org Microseconds, Fewer Is Better TensorFlow Lite 2022-05-18 Model: Inception ResNet V2 firstmachinetest 6K 12K 18K 24K 30K SE +/- 21.93, N = 3 26415.7
oneDNN Harness: IP Shapes 1D - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: IP Shapes 1D - Data Type: f32 - Engine: CPU firstmachinetest 0.887 1.774 2.661 3.548 4.435 SE +/- 0.00577, N = 3 3.94237 MIN: 3.67 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: IP Shapes 3D - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: IP Shapes 3D - Data Type: f32 - Engine: CPU firstmachinetest 1.12 2.24 3.36 4.48 5.6 SE +/- 0.00196, N = 3 4.97774 MIN: 4.89 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPU firstmachinetest 0.1645 0.329 0.4935 0.658 0.8225 SE +/- 0.000672, N = 3 0.731267 MIN: 0.7 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPU firstmachinetest 0.2505 0.501 0.7515 1.002 1.2525 SE +/- 0.00745, N = 3 1.11340 MIN: 1.04 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPU firstmachinetest 0.3448 0.6896 1.0344 1.3792 1.724 SE +/- 0.00143, N = 3 1.53228 MIN: 1.46 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPU firstmachinetest 0.6746 1.3492 2.0238 2.6984 3.373 SE +/- 0.02962, N = 6 2.99807 MIN: 2.81 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU firstmachinetest 2 4 6 8 10 SE +/- 0.00397, N = 3 8.57521 MIN: 8.44 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPU firstmachinetest 1.1879 2.3758 3.5637 4.7516 5.9395 SE +/- 0.00118, N = 3 5.27941 MIN: 5.09 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPU firstmachinetest 1.1807 2.3614 3.5421 4.7228 5.9035 SE +/- 0.00166, N = 3 5.24738 MIN: 5.02 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPU firstmachinetest 2 4 6 8 10 SE +/- 0.04575, N = 3 8.33924 MIN: 8.17 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPU firstmachinetest 0.2271 0.4542 0.6813 0.9084 1.1355 SE +/- 0.00052, N = 3 1.00945 MIN: 0.98 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPU firstmachinetest 0.2927 0.5854 0.8781 1.1708 1.4635 SE +/- 0.00296, N = 3 1.30084 MIN: 1.23 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU firstmachinetest 600 1200 1800 2400 3000 SE +/- 1.36, N = 3 2835.96 MIN: 2825.04 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU firstmachinetest 300 600 900 1200 1500 SE +/- 2.36, N = 3 1417.35 MIN: 1405.44 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPU firstmachinetest 600 1200 1800 2400 3000 SE +/- 0.85, N = 3 2834.98 MIN: 2823.75 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU firstmachinetest 0.8397 1.6794 2.5191 3.3588 4.1985 SE +/- 0.00482, N = 3 3.73203 MIN: 3.65 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPU firstmachinetest 2 4 6 8 10 SE +/- 0.00619, N = 3 8.81665 MIN: 8.58 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPU firstmachinetest 0.7025 1.405 2.1075 2.81 3.5125 SE +/- 0.00508, N = 3 3.12200 MIN: 2.93 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPU firstmachinetest 300 600 900 1200 1500 SE +/- 0.08, N = 3 1414.69 MIN: 1406.12 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPU firstmachinetest 600 1200 1800 2400 3000 SE +/- 0.41, N = 3 2834.58 MIN: 2824.05 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.1 Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPU firstmachinetest 300 600 900 1200 1500 SE +/- 0.23, N = 3 1415.38 MIN: 1406.07 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
Mobile Neural Network Model: nasnet OpenBenchmarking.org ms, Fewer Is Better Mobile Neural Network 2.1 Model: nasnet firstmachinetest 1.3262 2.6524 3.9786 5.3048 6.631 SE +/- 0.113, N = 15 5.894 MIN: 5.21 / MAX: 12.96 1. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl
Mobile Neural Network Model: mobilenetV3 OpenBenchmarking.org ms, Fewer Is Better Mobile Neural Network 2.1 Model: mobilenetV3 firstmachinetest 0.1708 0.3416 0.5124 0.6832 0.854 SE +/- 0.005, N = 15 0.759 MIN: 0.72 / MAX: 8.33 1. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl
Mobile Neural Network Model: squeezenetv1.1 OpenBenchmarking.org ms, Fewer Is Better Mobile Neural Network 2.1 Model: squeezenetv1.1 firstmachinetest 0.3123 0.6246 0.9369 1.2492 1.5615 SE +/- 0.011, N = 15 1.388 MIN: 1.33 / MAX: 10.34 1. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl
Mobile Neural Network Model: resnet-v2-50 OpenBenchmarking.org ms, Fewer Is Better Mobile Neural Network 2.1 Model: resnet-v2-50 firstmachinetest 3 6 9 12 15 SE +/- 0.06, N = 15 11.92 MIN: 11.53 / MAX: 38.34 1. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl
Mobile Neural Network Model: SqueezeNetV1.0 OpenBenchmarking.org ms, Fewer Is Better Mobile Neural Network 2.1 Model: SqueezeNetV1.0 firstmachinetest 0.5573 1.1146 1.6719 2.2292 2.7865 SE +/- 0.023, N = 15 2.477 MIN: 2.35 / MAX: 10.29 1. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl
Mobile Neural Network Model: MobileNetV2_224 OpenBenchmarking.org ms, Fewer Is Better Mobile Neural Network 2.1 Model: MobileNetV2_224 firstmachinetest 0.38 0.76 1.14 1.52 1.9 SE +/- 0.012, N = 15 1.689 MIN: 1.59 / MAX: 9.2 1. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl
Mobile Neural Network Model: mobilenet-v1-1.0 OpenBenchmarking.org ms, Fewer Is Better Mobile Neural Network 2.1 Model: mobilenet-v1-1.0 firstmachinetest 0.6293 1.2586 1.8879 2.5172 3.1465 SE +/- 0.002, N = 15 2.797 MIN: 2.76 / MAX: 9.64 1. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl
Mobile Neural Network Model: inception-v3 OpenBenchmarking.org ms, Fewer Is Better Mobile Neural Network 2.1 Model: inception-v3 firstmachinetest 4 8 12 16 20 SE +/- 0.25, N = 15 16.04 MIN: 14.1 / MAX: 37.41 1. (CXX) g++ options: -std=c++11 -O3 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math -fno-rtti -fno-exceptions -rdynamic -pthread -ldl
NCNN Target: CPU - Model: mobilenet OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: mobilenet firstmachinetest 2 4 6 8 10 SE +/- 0.05, N = 3 7.25 MIN: 7.07 / MAX: 9.05 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU-v2-v2 - Model: mobilenet-v2 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU-v2-v2 - Model: mobilenet-v2 firstmachinetest 0.4343 0.8686 1.3029 1.7372 2.1715 SE +/- 0.00, N = 3 1.93 MIN: 1.87 / MAX: 2.2 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU-v3-v3 - Model: mobilenet-v3 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU-v3-v3 - Model: mobilenet-v3 firstmachinetest 0.333 0.666 0.999 1.332 1.665 SE +/- 0.00, N = 3 1.48 MIN: 1.46 / MAX: 1.71 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: shufflenet-v2 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: shufflenet-v2 firstmachinetest 0.342 0.684 1.026 1.368 1.71 SE +/- 0.00, N = 3 1.52 MIN: 1.48 / MAX: 1.73 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: mnasnet OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: mnasnet firstmachinetest 0.351 0.702 1.053 1.404 1.755 SE +/- 0.00, N = 3 1.56 MIN: 1.54 / MAX: 1.87 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: efficientnet-b0 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: efficientnet-b0 firstmachinetest 0.6053 1.2106 1.8159 2.4212 3.0265 SE +/- 0.00, N = 3 2.69 MIN: 2.65 / MAX: 3.07 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: blazeface OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: blazeface firstmachinetest 0.1125 0.225 0.3375 0.45 0.5625 SE +/- 0.00, N = 3 0.5 MIN: 0.49 / MAX: 0.66 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: googlenet OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: googlenet firstmachinetest 1.3455 2.691 4.0365 5.382 6.7275 SE +/- 0.02, N = 3 5.98 MIN: 5.87 / MAX: 9.14 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: vgg16 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: vgg16 firstmachinetest 7 14 21 28 35 SE +/- 0.01, N = 3 29.96 MIN: 29.64 / MAX: 36.55 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: resnet18 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: resnet18 firstmachinetest 2 4 6 8 10 SE +/- 0.12, N = 3 6.28 MIN: 6.08 / MAX: 8.5 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: alexnet OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: alexnet firstmachinetest 1.0553 2.1106 3.1659 4.2212 5.2765 SE +/- 0.01, N = 3 4.69 MIN: 4.63 / MAX: 7.79 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: resnet50 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: resnet50 firstmachinetest 3 6 9 12 15 SE +/- 0.04, N = 3 11.87 MIN: 11.71 / MAX: 14.91 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: yolov4-tiny OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: yolov4-tiny firstmachinetest 3 6 9 12 15 SE +/- 0.02, N = 3 13.21 MIN: 12.7 / MAX: 16.45 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: squeezenet_ssd OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: squeezenet_ssd firstmachinetest 3 6 9 12 15 SE +/- 0.01, N = 3 10.37 MIN: 10.14 / MAX: 15.44 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: regnety_400m OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: regnety_400m firstmachinetest 1.0305 2.061 3.0915 4.122 5.1525 SE +/- 0.01, N = 3 4.58 MIN: 4.53 / MAX: 7.64 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: vision_transformer OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: vision_transformer firstmachinetest 30 60 90 120 150 SE +/- 1.07, N = 3 113.91 MIN: 112.28 / MAX: 580.42 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: CPU - Model: FastestDet OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: CPU - Model: FastestDet firstmachinetest 0.4185 0.837 1.2555 1.674 2.0925 SE +/- 0.07, N = 3 1.86 MIN: 1.76 / MAX: 4.68 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: mobilenet OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: mobilenet firstmachinetest 3 6 9 12 15 SE +/- 0.01, N = 3 10.70 MIN: 9.96 / MAX: 14.76 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2 firstmachinetest 0.7493 1.4986 2.2479 2.9972 3.7465 SE +/- 0.00, N = 3 3.33 MIN: 3.25 / MAX: 3.72 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3 firstmachinetest 0.8618 1.7236 2.5854 3.4472 4.309 SE +/- 0.01, N = 3 3.83 MIN: 3.72 / MAX: 4 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: shufflenet-v2 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: shufflenet-v2 firstmachinetest 0.5715 1.143 1.7145 2.286 2.8575 SE +/- 0.07, N = 3 2.54 MIN: 2.39 / MAX: 2.92 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: mnasnet OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: mnasnet firstmachinetest 0.7673 1.5346 2.3019 3.0692 3.8365 SE +/- 0.05, N = 3 3.41 MIN: 3.29 / MAX: 3.91 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: efficientnet-b0 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: efficientnet-b0 firstmachinetest 2 4 6 8 10 SE +/- 0.04, N = 3 7.92 MIN: 7.26 / MAX: 8.31 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: blazeface OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: blazeface firstmachinetest 0.2363 0.4726 0.7089 0.9452 1.1815 SE +/- 0.01, N = 3 1.05 MIN: 1.02 / MAX: 1.22 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: googlenet OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: googlenet firstmachinetest 3 6 9 12 15 SE +/- 0.02, N = 3 9.07 MIN: 8.48 / MAX: 9.47 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: vgg16 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: vgg16 firstmachinetest 15 30 45 60 75 SE +/- 0.02, N = 3 68.87 MIN: 68.54 / MAX: 69.35 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: resnet18 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: resnet18 firstmachinetest 2 4 6 8 10 SE +/- 0.02, N = 3 8.74 MIN: 8.11 / MAX: 9.13 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: alexnet OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: alexnet firstmachinetest 5 10 15 20 25 SE +/- 0.01, N = 3 18.29 MIN: 17.98 / MAX: 18.73 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: resnet50 OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: resnet50 firstmachinetest 5 10 15 20 25 SE +/- 0.01, N = 3 20.12 MIN: 19.86 / MAX: 20.55 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: yolov4-tiny OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: yolov4-tiny firstmachinetest 5 10 15 20 25 SE +/- 0.27, N = 3 19.79 MIN: 18.75 / MAX: 25.36 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: squeezenet_ssd OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: squeezenet_ssd firstmachinetest 3 6 9 12 15 SE +/- 0.03, N = 3 13.11 MIN: 12.54 / MAX: 14.35 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: regnety_400m OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: regnety_400m firstmachinetest 1.0035 2.007 3.0105 4.014 5.0175 SE +/- 0.05, N = 3 4.46 MIN: 4.28 / MAX: 4.81 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: vision_transformer OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: vision_transformer firstmachinetest 160 320 480 640 800 SE +/- 2.11, N = 3 719.18 MIN: 692.24 / MAX: 747.42 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
NCNN Target: Vulkan GPU - Model: FastestDet OpenBenchmarking.org ms, Fewer Is Better NCNN 20220729 Target: Vulkan GPU - Model: FastestDet firstmachinetest 0.6885 1.377 2.0655 2.754 3.4425 SE +/- 0.06, N = 3 3.06 MIN: 2.88 / MAX: 3.34 1. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread
TNN Target: CPU - Model: DenseNet OpenBenchmarking.org ms, Fewer Is Better TNN 0.3 Target: CPU - Model: DenseNet firstmachinetest 500 1000 1500 2000 2500 SE +/- 5.49, N = 3 2181.40 MIN: 2152.21 / MAX: 2244.7 1. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl
TNN Target: CPU - Model: MobileNet v2 OpenBenchmarking.org ms, Fewer Is Better TNN 0.3 Target: CPU - Model: MobileNet v2 firstmachinetest 40 80 120 160 200 SE +/- 0.38, N = 3 182.51 MIN: 179.91 / MAX: 188.17 1. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl
TNN Target: CPU - Model: SqueezeNet v2 OpenBenchmarking.org ms, Fewer Is Better TNN 0.3 Target: CPU - Model: SqueezeNet v2 firstmachinetest 10 20 30 40 50 SE +/- 0.42, N = 5 41.95 MIN: 40.18 / MAX: 43.01 1. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl
TNN Target: CPU - Model: SqueezeNet v1.1 OpenBenchmarking.org ms, Fewer Is Better TNN 0.3 Target: CPU - Model: SqueezeNet v1.1 firstmachinetest 40 80 120 160 200 SE +/- 0.09, N = 3 177.53 MIN: 177.25 / MAX: 177.92 1. (CXX) g++ options: -fopenmp -pthread -fvisibility=hidden -fvisibility=default -O3 -rdynamic -ldl
OpenCV Test: DNN - Deep Neural Network OpenBenchmarking.org ms, Fewer Is Better OpenCV 4.7 Test: DNN - Deep Neural Network firstmachinetest 3K 6K 9K 12K 15K SE +/- 66.50, N = 3 12915 1. (CXX) g++ options: -fPIC -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -shared
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream firstmachinetest 70 140 210 280 350 SE +/- 0.22, N = 3 335.17
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream firstmachinetest 30 60 90 120 150 SE +/- 0.08, N = 3 111.81
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream firstmachinetest 2 4 6 8 10 SE +/- 0.0094, N = 3 7.6609
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream firstmachinetest 0.801 1.602 2.403 3.204 4.005 SE +/- 0.0117, N = 3 3.5599
Neural Magic DeepSparse Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Asynchronous Multi-Stream firstmachinetest 4 8 12 16 20 SE +/- 0.02, N = 3 17.95
Neural Magic DeepSparse Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Synchronous Single-Stream firstmachinetest 2 4 6 8 10 SE +/- 0.0159, N = 3 7.9561
Neural Magic DeepSparse Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Asynchronous Multi-Stream firstmachinetest 14 28 42 56 70 SE +/- 0.06, N = 3 63.25
Neural Magic DeepSparse Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Synchronous Single-Stream firstmachinetest 5 10 15 20 25 SE +/- 0.04, N = 3 22.19
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream firstmachinetest 6 12 18 24 30 SE +/- 0.02, N = 3 26.82
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream firstmachinetest 3 6 9 12 15 SE +/- 0.02, N = 3 11.89
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream firstmachinetest 0.5344 1.0688 1.6032 2.1376 2.672 SE +/- 0.0036, N = 3 2.3753
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream firstmachinetest 0.2381 0.4762 0.7143 0.9524 1.1905 SE +/- 0.0021, N = 3 1.0581
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream firstmachinetest 13 26 39 52 65 SE +/- 0.35, N = 3 59.97
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream firstmachinetest 5 10 15 20 25 SE +/- 0.01, N = 3 22.37
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream firstmachinetest 60 120 180 240 300 SE +/- 0.14, N = 3 266.69
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream firstmachinetest 20 40 60 80 100 SE +/- 0.02, N = 3 105.15
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream firstmachinetest 6 12 18 24 30 SE +/- 0.01, N = 3 26.80
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream firstmachinetest 3 6 9 12 15 SE +/- 0.01, N = 3 11.90
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream firstmachinetest 13 26 39 52 65 SE +/- 0.23, N = 3 59.57
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream firstmachinetest 5 10 15 20 25 SE +/- 0.01, N = 3 22.04
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream firstmachinetest 9 18 27 36 45 SE +/- 0.04, N = 3 39.14
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream firstmachinetest 4 8 12 16 20 SE +/- 0.01, N = 3 14.59
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream firstmachinetest 40 80 120 160 200 SE +/- 0.16, N = 3 183.83
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream firstmachinetest 14 28 42 56 70 SE +/- 0.04, N = 3 61.94
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream firstmachinetest 4 8 12 16 20 SE +/- 0.02, N = 3 16.24
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream firstmachinetest 2 4 6 8 10 SE +/- 0.0077, N = 3 8.4159
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Asynchronous Multi-Stream firstmachinetest 20 40 60 80 100 SE +/- 0.02, N = 3 77.72
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Synchronous Single-Stream firstmachinetest 7 14 21 28 35 SE +/- 0.01, N = 3 28.70
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream firstmachinetest 70 140 210 280 350 SE +/- 0.07, N = 3 335.25
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.5 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream firstmachinetest 30 60 90 120 150 SE +/- 0.05, N = 3 111.68
DeepSpeech Acceleration: CPU OpenBenchmarking.org Seconds, Fewer Is Better DeepSpeech 0.6 Acceleration: CPU firstmachinetest 10 20 30 40 50 SE +/- 0.03, N = 3 45.23
RNNoise OpenBenchmarking.org Seconds, Fewer Is Better RNNoise 2020-06-28 firstmachinetest 3 6 9 12 15 SE +/- 0.04, N = 3 13.41 1. (CC) gcc options: -O2 -pedantic -fvisibility=hidden
Numenta Anomaly Benchmark Detector: KNN CAD OpenBenchmarking.org Seconds, Fewer Is Better Numenta Anomaly Benchmark 1.1 Detector: KNN CAD firstmachinetest 40 80 120 160 200 SE +/- 1.13, N = 3 169.65
Numenta Anomaly Benchmark Detector: Relative Entropy OpenBenchmarking.org Seconds, Fewer Is Better Numenta Anomaly Benchmark 1.1 Detector: Relative Entropy firstmachinetest 3 6 9 12 15 SE +/- 0.12, N = 15 12.83
Numenta Anomaly Benchmark Detector: Windowed Gaussian OpenBenchmarking.org Seconds, Fewer Is Better Numenta Anomaly Benchmark 1.1 Detector: Windowed Gaussian firstmachinetest 3 6 9 12 15 SE +/- 0.092, N = 15 9.667
Numenta Anomaly Benchmark Detector: Earthgecko Skyline OpenBenchmarking.org Seconds, Fewer Is Better Numenta Anomaly Benchmark 1.1 Detector: Earthgecko Skyline firstmachinetest 20 40 60 80 100 SE +/- 0.55, N = 3 92.49
Numenta Anomaly Benchmark Detector: Bayesian Changepoint OpenBenchmarking.org Seconds, Fewer Is Better Numenta Anomaly Benchmark 1.1 Detector: Bayesian Changepoint firstmachinetest 5 10 15 20 25 SE +/- 0.17, N = 15 18.99
Numenta Anomaly Benchmark Detector: Contextual Anomaly Detector OSE OpenBenchmarking.org Seconds, Fewer Is Better Numenta Anomaly Benchmark 1.1 Detector: Contextual Anomaly Detector OSE firstmachinetest 7 14 21 28 35 SE +/- 0.18, N = 3 30.82
Mlpack Benchmark Benchmark: scikit_ica OpenBenchmarking.org Seconds, Fewer Is Better Mlpack Benchmark Benchmark: scikit_ica firstmachinetest 6 12 18 24 30 SE +/- 0.07, N = 3 27.50
Mlpack Benchmark Benchmark: scikit_qda OpenBenchmarking.org Seconds, Fewer Is Better Mlpack Benchmark Benchmark: scikit_qda firstmachinetest 8 16 24 32 40 SE +/- 0.13, N = 3 33.09
Mlpack Benchmark Benchmark: scikit_svm OpenBenchmarking.org Seconds, Fewer Is Better Mlpack Benchmark Benchmark: scikit_svm firstmachinetest 4 8 12 16 20 SE +/- 0.00, N = 3 14.60
Mlpack Benchmark Benchmark: scikit_linearridgeregression OpenBenchmarking.org Seconds, Fewer Is Better Mlpack Benchmark Benchmark: scikit_linearridgeregression firstmachinetest 0.3645 0.729 1.0935 1.458 1.8225 SE +/- 0.01, N = 3 1.62
Phoronix Test Suite v10.8.5