Microsoft Azure HBv4 HPC Comparison Benchmarks
Benchmarks for a future article on Phoronix looking at HBv4 Genoa-X Linux performance..
HTML result view exported from: https://openbenchmarking.org/result/2307054-PTS-AZUREHPC63&grt.
7-Zip Compression
Test: Compression Rating
7-Zip Compression
Test: Decompression Rating
ACES DGEMM
Sustained Floating-Point Rate
Blender
Blend File: BMW27 - Compute: CPU-Only
Blender
Blend File: Classroom - Compute: CPU-Only
Blender
Blend File: Fishy Cat - Compute: CPU-Only
Blender
Blend File: Barbershop - Compute: CPU-Only
Blender
Blend File: Pabellon Barcelona - Compute: CPU-Only
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: FFTW - Precision: float - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: FFTW - Precision: float - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: FFTW - Precision: float - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: FFTW - Precision: float - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: FFTW - Precision: double - X Y Z: 128
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: FFTW - Precision: double - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: FFTW - Precision: double - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: Stock - Precision: float - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: Stock - Precision: float - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: FFTW - Precision: double - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: FFTW - Precision: double - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: Stock - Precision: float - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: Stock - Precision: float - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: Stock - Precision: double - X Y Z: 128
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: Stock - Precision: double - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: Stock - Precision: double - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: Stock - Precision: double - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: Stock - Precision: double - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: FFTW - Precision: float-long - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: FFTW - Precision: float-long - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: FFTW - Precision: float-long - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: FFTW - Precision: float-long - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: FFTW - Precision: double-long - X Y Z: 128
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: FFTW - Precision: double-long - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: FFTW - Precision: double-long - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: Stock - Precision: float-long - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: Stock - Precision: float-long - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: FFTW - Precision: double-long - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: FFTW - Precision: double-long - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: Stock - Precision: float-long - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: Stock - Precision: float-long - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: Stock - Precision: double-long - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: c2c - Backend: Stock - Precision: double-long - X Y Z: 512
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: Stock - Precision: double-long - X Y Z: 256
HeFFTe - Highly Efficient FFT for Exascale
Test: r2c - Backend: Stock - Precision: double-long - X Y Z: 512
High Performance Conjugate Gradient
X Y Z: 104 104 104 - RT: 60
High Performance Conjugate Gradient
X Y Z: 144 144 144 - RT: 60
High Performance Conjugate Gradient
X Y Z: 160 160 160 - RT: 60
Intel Open Image Denoise
Run: RT.hdr_alb_nrm.3840x2160 - Device: CPU-Only
Intel Open Image Denoise
Run: RT.ldr_alb_nrm.3840x2160 - Device: CPU-Only
Intel Open Image Denoise
Run: RTLightmap.hdr.4096x4096 - Device: CPU-Only
Laghos
Test: Triple Point Problem
Laghos
Test: Sedov Blast Wave, ube_922_hex.mesh
libxsmm
M N K: 128
libxsmm
M N K: 256
libxsmm
M N K: 32
libxsmm
M N K: 64
Liquid-DSP
Threads: 1 - Buffer Length: 256 - Filter Length: 32
Liquid-DSP
Threads: 32 - Buffer Length: 256 - Filter Length: 32
Liquid-DSP
Threads: 32 - Buffer Length: 256 - Filter Length: 57
Liquid-DSP
Threads: 128 - Buffer Length: 256 - Filter Length: 32
Liquid-DSP
Threads: 128 - Buffer Length: 256 - Filter Length: 57
Liquid-DSP
Threads: 176 - Buffer Length: 256 - Filter Length: 32
Liquid-DSP
Threads: 176 - Buffer Length: 256 - Filter Length: 57
Liquid-DSP
Threads: 176 - Buffer Length: 256 - Filter Length: 512
NAMD
ATPase Simulation - 327,506 Atoms
NAS Parallel Benchmarks
Test / Class: BT.C
NAS Parallel Benchmarks
Test / Class: CG.C
NAS Parallel Benchmarks
Test / Class: EP.D
NAS Parallel Benchmarks
Test / Class: FT.C
NAS Parallel Benchmarks
Test / Class: IS.D
NAS Parallel Benchmarks
Test / Class: MG.C
NAS Parallel Benchmarks
Test / Class: SP.C
oneDNN
Harness: IP Shapes 1D - Data Type: f32 - Engine: CPU
oneDNN
Harness: IP Shapes 3D - Data Type: f32 - Engine: CPU
oneDNN
Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU
oneDNN
Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPU
oneDNN
Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU
oneDNN
Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU
oneDNN
Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPU
oneDNN
Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPU
OSPRay
Benchmark: particle_volume/ao/real_time
OSPRay
Benchmark: particle_volume/scivis/real_time
OSPRay
Benchmark: particle_volume/pathtracer/real_time
OSPRay
Benchmark: gravity_spheres_volume/dim_512/ao/real_time
OSPRay
Benchmark: gravity_spheres_volume/dim_512/scivis/real_time
OSPRay
Benchmark: gravity_spheres_volume/dim_512/pathtracer/real_time
Pennant
Test: sedovbig
Pennant
Test: leblancbig
PETSc
Test: Streams
PostgreSQL
Scaling Factor: 1 - Clients: 500 - Mode: Read Only
PostgreSQL
Scaling Factor: 1 - Clients: 500 - Mode: Read Only - Average Latency
PostgreSQL
Scaling Factor: 1 - Clients: 800 - Mode: Read Only
PostgreSQL
Scaling Factor: 1 - Clients: 800 - Mode: Read Only - Average Latency
Remhos
Test: Sample Remap Example
Timed Linux Kernel Compilation
Build: allmodconfig
Timed Node.js Compilation
Time To Compile
Phoronix Test Suite v10.8.5