zz AMD Ryzen 7 5700G testing with a ASUS TUF GAMING B550M-PLUS (WI-FI) (2423 BIOS) and ASUS AMD Cezanne 512MB on Ubuntu 21.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2204252-NE-ZZ773288056&sor .
zz Processor Motherboard Chipset Memory Disk Graphics Audio Monitor Network OS Kernel Desktop Display Server OpenGL Vulkan Compiler File-System Screen Resolution A B C AMD Ryzen 7 5700G @ 3.80GHz (8 Cores / 16 Threads) ASUS TUF GAMING B550M-PLUS (WI-FI) (2423 BIOS) AMD Renoir/Cezanne 16GB 1000GB Samsung SSD 980 PRO 1TB ASUS AMD Cezanne 512MB (2000/1800MHz) AMD Renoir Radeon HD Audio MX279 Realtek RTL8125 2.5GbE + Intel Wi-Fi 6 AX200 Ubuntu 21.10 5.16.0-051600rc8daily20220108-generic (x86_64) GNOME Shell 40.5 X Server 1.20.11 + Wayland 4.6 Mesa 22.0.0-devel (git-9cb9101 2022-01-08 impish-oibaf-ppa) (LLVM 13.0.0 DRM 3.44) 1.2.199 GCC 11.2.0 ext4 1920x1080 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-ZPT0kp/gcc-11-11.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-ZPT0kp/gcc-11-11.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0xa50000c Python Details - Python 3.9.7 Security Details - itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional IBRS_FW STIBP: always-on RSB filling + srbds: Not affected + tsx_async_abort: Not affected
zz svt-av1: Preset 4 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 4K svt-av1: Preset 10 - Bosphorus 4K svt-av1: Preset 12 - Bosphorus 4K svt-av1: Preset 4 - Bosphorus 1080p svt-av1: Preset 8 - Bosphorus 1080p svt-av1: Preset 10 - Bosphorus 1080p svt-av1: Preset 12 - Bosphorus 1080p avifenc: 0 avifenc: 2 avifenc: 6 avifenc: 6, Lossless avifenc: 10, Lossless onednn: IP Shapes 1D - f32 - CPU onednn: IP Shapes 3D - f32 - CPU onednn: IP Shapes 1D - u8s8f32 - CPU onednn: IP Shapes 3D - u8s8f32 - CPU onednn: Convolution Batch Shapes Auto - f32 - CPU onednn: Deconvolution Batch shapes_1d - f32 - CPU onednn: Deconvolution Batch shapes_3d - f32 - CPU onednn: Convolution Batch Shapes Auto - u8s8f32 - CPU onednn: Deconvolution Batch shapes_1d - u8s8f32 - CPU onednn: Deconvolution Batch shapes_3d - u8s8f32 - CPU onednn: Recurrent Neural Network Training - f32 - CPU onednn: Recurrent Neural Network Inference - f32 - CPU onednn: Recurrent Neural Network Training - u8s8f32 - CPU onednn: Recurrent Neural Network Inference - u8s8f32 - CPU onednn: Matrix Multiply Batch Shapes Transformer - f32 - CPU onednn: Recurrent Neural Network Training - bf16bf16bf16 - CPU onednn: Recurrent Neural Network Inference - bf16bf16bf16 - CPU onednn: Matrix Multiply Batch Shapes Transformer - u8s8f32 - CPU onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Standard onnx: bertsquad-12 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Standard onnx: super-resolution-10 - CPU - Standard A B C 1.981 26.393 65.142 89.668 6.035 92.454 189.409 355.484 158.835 74.461 10.148 12.537 5.733 3.98732 11.7131 1.39092 2.84523 22.3508 8.14632 7.03558 23.4701 1.95484 2.91606 3583.1 2213.99 3580.24 2210.71 4.48476 3584.64 2213.88 1.70968 6063 299 496 47 1040 3273 1.984 26.321 64.923 86.968 6.044 93.619 188.79 350.775 158.875 74.241 10.165 12.5 5.59 4.05032 11.7333 1.3903 2.60928 22.3987 8.36734 7.02718 23.5615 1.95319 3.01126 3580.17 2219.82 3577.41 2214.51 4.48147 3577.26 2225.46 1.68982 6062 298 495 47 1036 3309 1.978 26.25 65.193 89.686 6.091 92.819 190.064 349.096 158.147 74.275 10.219 12.589 5.635 4.07036 11.7967 1.39934 2.6052 22.4506 8.25826 7.12334 23.4575 1.95551 2.86797 3585.22 2232.66 3850.32 2265.57 4.50371 3591.14 2214.16 1.70049 6545 299 788 47 1056 3263 OpenBenchmarking.org
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.0 Encoder Mode: Preset 4 - Input: Bosphorus 4K B A C 0.4464 0.8928 1.3392 1.7856 2.232 1.984 1.981 1.978 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq -pie
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.0 Encoder Mode: Preset 8 - Input: Bosphorus 4K A B C 6 12 18 24 30 26.39 26.32 26.25 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq -pie
SVT-AV1 Encoder Mode: Preset 10 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.0 Encoder Mode: Preset 10 - Input: Bosphorus 4K C A B 15 30 45 60 75 65.19 65.14 64.92 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq -pie
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.0 Encoder Mode: Preset 12 - Input: Bosphorus 4K C A B 20 40 60 80 100 89.69 89.67 86.97 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq -pie
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.0 Encoder Mode: Preset 4 - Input: Bosphorus 1080p C B A 2 4 6 8 10 6.091 6.044 6.035 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq -pie
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.0 Encoder Mode: Preset 8 - Input: Bosphorus 1080p B C A 20 40 60 80 100 93.62 92.82 92.45 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq -pie
SVT-AV1 Encoder Mode: Preset 10 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.0 Encoder Mode: Preset 10 - Input: Bosphorus 1080p C A B 40 80 120 160 200 190.06 189.41 188.79 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq -pie
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 1.0 Encoder Mode: Preset 12 - Input: Bosphorus 1080p A B C 80 160 240 320 400 355.48 350.78 349.10 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq -pie
libavif avifenc Encoder Speed: 0 OpenBenchmarking.org Seconds, Fewer Is Better libavif avifenc 0.10 Encoder Speed: 0 C A B 40 80 120 160 200 158.15 158.84 158.88 1. (CXX) g++ options: -O3 -fPIC -lm
libavif avifenc Encoder Speed: 2 OpenBenchmarking.org Seconds, Fewer Is Better libavif avifenc 0.10 Encoder Speed: 2 B C A 20 40 60 80 100 74.24 74.28 74.46 1. (CXX) g++ options: -O3 -fPIC -lm
libavif avifenc Encoder Speed: 6 OpenBenchmarking.org Seconds, Fewer Is Better libavif avifenc 0.10 Encoder Speed: 6 A B C 3 6 9 12 15 10.15 10.17 10.22 1. (CXX) g++ options: -O3 -fPIC -lm
libavif avifenc Encoder Speed: 6, Lossless OpenBenchmarking.org Seconds, Fewer Is Better libavif avifenc 0.10 Encoder Speed: 6, Lossless B A C 3 6 9 12 15 12.50 12.54 12.59 1. (CXX) g++ options: -O3 -fPIC -lm
libavif avifenc Encoder Speed: 10, Lossless OpenBenchmarking.org Seconds, Fewer Is Better libavif avifenc 0.10 Encoder Speed: 10, Lossless B C A 1.2899 2.5798 3.8697 5.1596 6.4495 5.590 5.635 5.733 1. (CXX) g++ options: -O3 -fPIC -lm
oneDNN Harness: IP Shapes 1D - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: IP Shapes 1D - Data Type: f32 - Engine: CPU A B C 0.9158 1.8316 2.7474 3.6632 4.579 3.98732 4.05032 4.07036 MIN: 3.82 MIN: 3.86 MIN: 3.91 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: IP Shapes 3D - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: IP Shapes 3D - Data Type: f32 - Engine: CPU A B C 3 6 9 12 15 11.71 11.73 11.80 MIN: 11.67 MIN: 11.68 MIN: 11.74 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPU B A C 0.3149 0.6298 0.9447 1.2596 1.5745 1.39030 1.39092 1.39934 MIN: 1.33 MIN: 1.33 MIN: 1.33 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPU C B A 0.6402 1.2804 1.9206 2.5608 3.201 2.60520 2.60928 2.84523 MIN: 2.52 MIN: 2.53 MIN: 2.65 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU A B C 5 10 15 20 25 22.35 22.40 22.45 MIN: 22 MIN: 22.05 MIN: 22.1 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPU A C B 2 4 6 8 10 8.14632 8.25826 8.36734 MIN: 5.99 MIN: 6.03 MIN: 6.04 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPU B A C 2 4 6 8 10 7.02718 7.03558 7.12334 MIN: 6.83 MIN: 6.84 MIN: 6.89 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPU C A B 6 12 18 24 30 23.46 23.47 23.56 MIN: 22.97 MIN: 23.09 MIN: 23.18 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPU B A C 0.44 0.88 1.32 1.76 2.2 1.95319 1.95484 1.95551 MIN: 1.9 MIN: 1.91 MIN: 1.91 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPU C A B 0.6775 1.355 2.0325 2.71 3.3875 2.86797 2.91606 3.01126 MIN: 2.79 MIN: 2.8 MIN: 2.84 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU B A C 800 1600 2400 3200 4000 3580.17 3583.10 3585.22 MIN: 3567.88 MIN: 3568.77 MIN: 3573.75 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU A B C 500 1000 1500 2000 2500 2213.99 2219.82 2232.66 MIN: 2203.86 MIN: 2206.92 MIN: 2221.51 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPU B A C 800 1600 2400 3200 4000 3577.41 3580.24 3850.32 MIN: 3567.8 MIN: 3565.15 MIN: 3827.91 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPU A B C 500 1000 1500 2000 2500 2210.71 2214.51 2265.57 MIN: 2195.33 MIN: 2204.95 MIN: 2245.96 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Matrix Multiply Batch Shapes Transformer - Data Type: f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Matrix Multiply Batch Shapes Transformer - Data Type: f32 - Engine: CPU B A C 1.0133 2.0266 3.0399 4.0532 5.0665 4.48147 4.48476 4.50371 MIN: 4.37 MIN: 4.36 MIN: 4.38 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPU B A C 800 1600 2400 3200 4000 3577.26 3584.64 3591.14 MIN: 3566.21 MIN: 3574.59 MIN: 3578.53 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPU A C B 500 1000 1500 2000 2500 2213.88 2214.16 2225.46 MIN: 2205.37 MIN: 2198.56 MIN: 2205.78 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
oneDNN Harness: Matrix Multiply Batch Shapes Transformer - Data Type: u8s8f32 - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 2.6 Harness: Matrix Multiply Batch Shapes Transformer - Data Type: u8s8f32 - Engine: CPU B C A 0.3847 0.7694 1.1541 1.5388 1.9235 1.68982 1.70049 1.70968 MIN: 1.63 MIN: 1.64 MIN: 1.65 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -std=c++11 -pie -ldl -lpthread
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Minute, More Is Better ONNX Runtime 1.11 Model: GPT-2 - Device: CPU - Executor: Standard C A B 1400 2800 4200 5600 7000 6545 6063 6062 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Minute, More Is Better ONNX Runtime 1.11 Model: yolov4 - Device: CPU - Executor: Standard C A B 70 140 210 280 350 299 299 298 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Minute, More Is Better ONNX Runtime 1.11 Model: bertsquad-12 - Device: CPU - Executor: Standard C A B 200 400 600 800 1000 788 496 495 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Minute, More Is Better ONNX Runtime 1.11 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard C B A 11 22 33 44 55 47 47 47 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Minute, More Is Better ONNX Runtime 1.11 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard C A B 200 400 600 800 1000 1056 1040 1036 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Minute, More Is Better ONNX Runtime 1.11 Model: super-resolution-10 - Device: CPU - Executor: Standard B A C 700 1400 2100 2800 3500 3309 3273 3263 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto -fno-fat-lto-objects -ldl -lrt
Phoronix Test Suite v10.8.5