nogaAllPyTorchResults

AMD Ryzen 9 9950X 16-Core testing with a ASUS PRIME B650M-A II (3201 BIOS) and NVIDIA GeForce RTX 4060 Ti 16GB on Ubuntu 24.04 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2501238-NE-NOGAALLPY69&grw.

nogaAllPyTorchResultsProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDisplay ServerDisplay DriverCompilerFile-SystemScreen ResolutionptRun2AMD Ryzen 9 9950X 16-Core @ 5.75GHz (16 Cores / 32 Threads)ASUS PRIME B650M-A II (3201 BIOS)AMD Device 14d84 x 48GB DDR5-3600MT/s G Skill F5-6800J3446F48G2000GB Samsung SSD 980 PRO 2TBNVIDIA GeForce RTX 4060 Ti 16GBNVIDIA Device 22bd2 x Intel 10-Gigabit X540-AT2 + Realtek RTL8125 2.5GbEUbuntu 24.046.8.0-51-generic (x86_64)X Server 1.21.1.11NVIDIAGCC 13.3.0 + CUDA 12.4ext41920x1080OpenBenchmarking.org- Transparent Huge Pages: madvise- Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xb404023 - Python 3.12.3- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS; IBPB: conditional; STIBP: always-on; RSB filling; PBRSB-eIBRS: Not affected; BHI: Not affected + srbds: Not affected + tsx_async_abort: Not affected

nogaAllPyTorchResultspytorch: CPU - 1 - ResNet-50pytorch: CPU - 1 - ResNet-152pytorch: CPU - 16 - ResNet-50pytorch: CPU - 32 - ResNet-50pytorch: CPU - 64 - ResNet-50pytorch: CPU - 16 - ResNet-152pytorch: CPU - 256 - ResNet-50pytorch: CPU - 32 - ResNet-152pytorch: CPU - 512 - ResNet-50pytorch: CPU - 64 - ResNet-152pytorch: CPU - 256 - ResNet-152pytorch: CPU - 512 - ResNet-152pytorch: CPU - 1 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_lpytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lpytorch: CPU - 256 - Efficientnet_v2_lpytorch: CPU - 512 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 1 - ResNet-50pytorch: NVIDIA CUDA GPU - 1 - ResNet-152pytorch: NVIDIA CUDA GPU - 16 - ResNet-50pytorch: NVIDIA CUDA GPU - 32 - ResNet-50pytorch: NVIDIA CUDA GPU - 64 - ResNet-50pytorch: NVIDIA CUDA GPU - 16 - ResNet-152pytorch: NVIDIA CUDA GPU - 256 - ResNet-50pytorch: NVIDIA CUDA GPU - 32 - ResNet-152pytorch: NVIDIA CUDA GPU - 512 - ResNet-50pytorch: NVIDIA CUDA GPU - 64 - ResNet-152pytorch: NVIDIA CUDA GPU - 256 - ResNet-152pytorch: NVIDIA CUDA GPU - 512 - ResNet-152pytorch: NVIDIA CUDA GPU - 1 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 16 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 32 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 64 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 256 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 512 - Efficientnet_v2_lptRun273.2729.8053.2152.1152.3721.3652.5221.2252.9821.2721.8121.6916.1812.7012.5612.6112.4912.59546.09212.67401.90402.56402.07169.72400.84170.11400.50170.14170.09170.15113.69102.33102.31102.31102.23102.25OpenBenchmarking.org

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-50ptRun21632486480SE +/- 0.80, N = 373.27MIN: 66.63 / MAX: 75.92

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-152ptRun2714212835SE +/- 0.33, N = 329.80MIN: 28.4 / MAX: 30.51

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-50ptRun21224364860SE +/- 0.55, N = 353.21MIN: 47.38 / MAX: 54.58

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-50ptRun21224364860SE +/- 0.65, N = 352.11MIN: 47.37 / MAX: 53.95

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-50ptRun21224364860SE +/- 0.39, N = 1552.37MIN: 46.86 / MAX: 55.47

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-152ptRun2510152025SE +/- 0.18, N = 321.36MIN: 20.23 / MAX: 21.66

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-50ptRun21224364860SE +/- 0.66, N = 352.52MIN: 48.77 / MAX: 53.97

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-152ptRun2510152025SE +/- 0.15, N = 321.22MIN: 20.15 / MAX: 22.02

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-50ptRun21224364860SE +/- 0.58, N = 552.98MIN: 45.32 / MAX: 55.2

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-152ptRun2510152025SE +/- 0.26, N = 321.27MIN: 20.06 / MAX: 21.77

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-152ptRun2510152025SE +/- 0.05, N = 321.81MIN: 18.37 / MAX: 22.12

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-152ptRun2510152025SE +/- 0.17, N = 321.69MIN: 20.36 / MAX: 22.06

PyTorch

Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_lptRun248121620SE +/- 0.06, N = 316.18MIN: 14.75 / MAX: 16.36

PyTorch

Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lptRun23691215SE +/- 0.08, N = 312.70MIN: 11.27 / MAX: 13.33

PyTorch

Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_lptRun23691215SE +/- 0.16, N = 312.56MIN: 11.17 / MAX: 13.14

PyTorch

Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_lptRun23691215SE +/- 0.05, N = 312.61MIN: 11.4 / MAX: 13.2

PyTorch

Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_lptRun23691215SE +/- 0.03, N = 312.49MIN: 11.15 / MAX: 12.99

PyTorch

Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_lptRun23691215SE +/- 0.06, N = 312.59MIN: 11.43 / MAX: 13.06

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-50ptRun2120240360480600SE +/- 1.81, N = 3546.09MIN: 476.52 / MAX: 554.58

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-152ptRun250100150200250SE +/- 1.05, N = 3212.67MIN: 166.05 / MAX: 216.41

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-50ptRun290180270360450SE +/- 0.87, N = 3401.90MIN: 337.81 / MAX: 405.52

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-50ptRun290180270360450SE +/- 0.92, N = 3402.56MIN: 335.33 / MAX: 405.72

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-50ptRun290180270360450SE +/- 0.58, N = 3402.07MIN: 335.52 / MAX: 405.33

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-152ptRun24080120160200SE +/- 0.07, N = 3169.72MIN: 134.18 / MAX: 170.75

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-50ptRun290180270360450SE +/- 0.11, N = 3400.84MIN: 336.14 / MAX: 403.07

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-152ptRun24080120160200SE +/- 0.11, N = 3170.11MIN: 155.88 / MAX: 171.23

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-50ptRun290180270360450SE +/- 0.05, N = 3400.50MIN: 336.68 / MAX: 403.22

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-152ptRun24080120160200SE +/- 0.10, N = 3170.14MIN: 156.17 / MAX: 171.11

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-152ptRun24080120160200SE +/- 0.07, N = 3170.09MIN: 155.92 / MAX: 171.11

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-152ptRun24080120160200SE +/- 0.07, N = 3170.15MIN: 156.38 / MAX: 170.8

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: Efficientnet_v2_lptRun2306090120150SE +/- 0.42, N = 3113.69MIN: 85.58 / MAX: 115.03

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: Efficientnet_v2_lptRun220406080100SE +/- 0.02, N = 3102.33MIN: 83.07 / MAX: 102.9

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: Efficientnet_v2_lptRun220406080100SE +/- 0.01, N = 3102.31MIN: 82.12 / MAX: 102.84

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: Efficientnet_v2_lptRun220406080100SE +/- 0.05, N = 3102.31MIN: 84.21 / MAX: 102.86

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: Efficientnet_v2_lptRun220406080100SE +/- 0.01, N = 3102.23MIN: 82.95 / MAX: 102.8

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: Efficientnet_v2_lptRun220406080100SE +/- 0.01, N = 3102.25MIN: 82.89 / MAX: 102.61


Phoronix Test Suite v10.8.5