mnn grace ARMv8 Neoverse-V2 testing with a Pegatron JIMBO P4352 (00022432 BIOS) and ASPEED on Ubuntu 24.04 via the Phoronix Test Suite. a: Processor: ARMv8 Neoverse-V2 @ 3.47GHz (72 Cores), Motherboard: Pegatron JIMBO P4352 (00022432 BIOS), Memory: 1 x 480GB LPDDR5-6400MT/s NVIDIA 699-2G530-0236-RC1, Disk: 1000GB CT1000T700SSD3, Graphics: ASPEED, Network: 2 x Intel X550 OS: Ubuntu 24.04, Kernel: 6.8.0-48-generic-64k (aarch64), Compiler: GCC 13.2.0 + Clang 18.1.3 + CUDA 11.8, File-System: ext4, Screen Resolution: 1920x1200 b: Processor: ARMv8 Neoverse-V2 @ 3.47GHz (72 Cores), Motherboard: Pegatron JIMBO P4352 (00022432 BIOS), Memory: 1 x 480GB LPDDR5-6400MT/s NVIDIA 699-2G530-0236-RC1, Disk: 1000GB CT1000T700SSD3, Graphics: ASPEED, Network: 2 x Intel X550 OS: Ubuntu 24.04, Kernel: 6.8.0-48-generic-64k (aarch64), Compiler: GCC 13.2.0 + Clang 18.1.3 + CUDA 11.8, File-System: ext4, Screen Resolution: 1920x1200 c: Processor: ARMv8 Neoverse-V2 @ 3.47GHz (72 Cores), Motherboard: Pegatron JIMBO P4352 (00022432 BIOS), Memory: 1 x 480GB LPDDR5-6400MT/s NVIDIA 699-2G530-0236-RC1, Disk: 1000GB CT1000T700SSD3, Graphics: ASPEED, Network: 2 x Intel X550 OS: Ubuntu 24.04, Kernel: 6.8.0-48-generic-64k (aarch64), Compiler: GCC 13.2.0 + Clang 18.1.3 + CUDA 11.8, File-System: ext4, Screen Resolution: 1920x1200 d: Processor: ARMv8 Neoverse-V2 @ 3.47GHz (72 Cores), Motherboard: Pegatron JIMBO P4352 (00022432 BIOS), Memory: 1 x 480GB LPDDR5-6400MT/s NVIDIA 699-2G530-0236-RC1, Disk: 1000GB CT1000T700SSD3, Graphics: ASPEED, Network: 2 x Intel X550 OS: Ubuntu 24.04, Kernel: 6.8.0-48-generic-64k (aarch64), Compiler: GCC 13.2.0 + Clang 18.1.3 + CUDA 11.8, File-System: ext4, Screen Resolution: 1920x1200 Mobile Neural Network 3.0 Model: inception-v3 ms < Lower Is Better a . 7.665 |==================================================================== b . 7.705 |==================================================================== c . 7.683 |==================================================================== d . 7.700 |==================================================================== Mobile Neural Network 3.0 Model: mobilenet-v1-1.0 ms < Lower Is Better a . 1.056 |==================================================================== b . 1.052 |==================================================================== c . 1.053 |==================================================================== d . 1.047 |=================================================================== Mobile Neural Network 3.0 Model: MobileNetV2_224 ms < Lower Is Better a . 1.016 |==================================================================== b . 1.005 |=================================================================== c . 1.017 |==================================================================== d . 1.013 |==================================================================== Mobile Neural Network 3.0 Model: SqueezeNetV1.0 ms < Lower Is Better a . 1.782 |==================================================================== b . 1.792 |==================================================================== c . 1.763 |=================================================================== d . 1.785 |==================================================================== Mobile Neural Network 3.0 Model: resnet-v2-50 ms < Lower Is Better a . 6.149 |==================================================================== b . 6.071 |=================================================================== c . 6.028 |================================================================== d . 6.177 |==================================================================== Mobile Neural Network 3.0 Model: squeezenetv1.1 ms < Lower Is Better a . 0.979 |=================================================================== b . 0.976 |=================================================================== c . 0.974 |=================================================================== d . 0.989 |==================================================================== Mobile Neural Network 3.0 Model: mobilenetV3 ms < Lower Is Better a . 0.864 |================================================================== b . 0.876 |=================================================================== c . 0.877 |=================================================================== d . 0.887 |==================================================================== Mobile Neural Network 3.0 Model: nasnet ms < Lower Is Better a . 3.969 |==================================================================== b . 3.990 |==================================================================== c . 3.993 |==================================================================== d . 3.962 |===================================================================