litert-onednn-xnnpack Benchmarks for a future article. 2 x AMD EPYC 9575F 64-Core testing with a AMD VOLCANO (RVOT1000D BIOS) and ASPEED on Ubuntu 24.04 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2410162-NE-LITERTONE15&sor&grr .
litert-onednn-xnnpack Processor Motherboard Chipset Memory Disk Graphics Network OS Kernel Compiler File-System Screen Resolution a aa b 2 x AMD EPYC 9575F 64-Core @ 5.01GHz (128 Cores / 256 Threads) AMD VOLCANO (RVOT1000D BIOS) AMD Device 153a 1520GB 2 x 3841GB SAMSUNG MZWLO3T8HCLS-00A07 ASPEED Broadcom NetXtreme BCM5720 PCIe Ubuntu 24.04 6.8.12-powercap-1ah-patched (x86_64) GCC 13.2.0 ext4 1920x1200 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-backtrace --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-OiuXZC/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-OiuXZC/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - a: Scaling Governor: amd-pstate-epp powersave (EPP: power) - CPU Microcode: 0xb002110 - aa: Scaling Governor: amd-pstate-epp performance (EPP: performance) - CPU Microcode: 0xb002110 - b: Scaling Governor: amd-pstate-epp performance (EPP: performance) - CPU Microcode: 0xb002110 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS; IBPB: conditional; STIBP: always-on; RSB filling; PBRSB-eIBRS: Not affected; BHI: Not affected + srbds: Not affected + tsx_async_abort: Not affected
litert-onednn-xnnpack litert: Inception V4 litert: Mobilenet Float litert: DeepLab V3 litert: NASNet Mobile litert: Mobilenet Quant litert: Inception ResNet V2 litert: SqueezeNet xnnpack: QS8MobileNetV2 xnnpack: FP16MobileNetV3Small xnnpack: FP16MobileNetV3Large xnnpack: FP16MobileNetV2 xnnpack: FP16MobileNetV1 xnnpack: FP32MobileNetV3Small xnnpack: FP32MobileNetV3Large xnnpack: FP32MobileNetV2 xnnpack: FP32MobileNetV1 onednn: Recurrent Neural Network Training - CPU onednn: Recurrent Neural Network Inference - CPU litert: Quantized COCO SSD MobileNet v1 onednn: Deconvolution Batch shapes_1d - CPU onednn: IP Shapes 1D - CPU onednn: IP Shapes 3D - CPU onednn: Convolution Batch Shapes Auto - CPU onednn: Deconvolution Batch shapes_3d - CPU a aa b 65970.9 5922.59 28110.1 180002 9607.40 417.017 387.459 17.8179 0.631954 0.451791 0.258396 0.429801 68014 5619.35 23838.8 1338560 82918.4 132102 9561.25 17257 25785 27319 18525 7483 21224 22775 16796 7130 418.838 395.488 10521.1 15.3918 0.632095 0.458506 0.259777 0.425348 66603.9 6222.55 22624.7 190987 36194.8 90362.0 9771.82 25089 17479 27079 14703 10504 17188 22324 14325 7699 415.615 389.988 10308.1 15.7465 0.634881 0.453833 0.257735 0.430174 OpenBenchmarking.org
LiteRT Model: Inception V4 OpenBenchmarking.org Microseconds, Fewer Is Better LiteRT 2024-10-15 Model: Inception V4 a b aa 15K 30K 45K 60K 75K SE +/- 5520.67, N = 15 SE +/- 746.34, N = 15 65970.9 66603.9 68014.0
LiteRT Model: Mobilenet Float OpenBenchmarking.org Microseconds, Fewer Is Better LiteRT 2024-10-15 Model: Mobilenet Float aa a b 1300 2600 3900 5200 6500 SE +/- 119.72, N = 13 SE +/- 104.76, N = 15 5619.35 5922.59 6222.55
LiteRT Model: DeepLab V3 OpenBenchmarking.org Microseconds, Fewer Is Better LiteRT 2024-10-15 Model: DeepLab V3 b aa a 6K 12K 18K 24K 30K SE +/- 1635.57, N = 15 SE +/- 3193.55, N = 12 22624.7 23838.8 28110.1
LiteRT Model: NASNet Mobile OpenBenchmarking.org Microseconds, Fewer Is Better LiteRT 2024-10-15 Model: NASNet Mobile a b aa 300K 600K 900K 1200K 1500K SE +/- 16545.28, N = 12 SE +/- 16019.04, N = 12 180002 190987 1338560
LiteRT Model: Mobilenet Quant OpenBenchmarking.org Microseconds, Fewer Is Better LiteRT 2024-10-15 Model: Mobilenet Quant b aa 20K 40K 60K 80K 100K SE +/- 5253.23, N = 15 36194.8 82918.4
LiteRT Model: Inception ResNet V2 OpenBenchmarking.org Microseconds, Fewer Is Better LiteRT 2024-10-15 Model: Inception ResNet V2 b aa 30K 60K 90K 120K 150K SE +/- 2643.69, N = 12 90362.0 132102.0
LiteRT Model: SqueezeNet OpenBenchmarking.org Microseconds, Fewer Is Better LiteRT 2024-10-15 Model: SqueezeNet aa a b 2K 4K 6K 8K 10K SE +/- 109.45, N = 15 SE +/- 126.71, N = 3 9561.25 9607.40 9771.82
XNNPACK Model: QS8MobileNetV2 OpenBenchmarking.org us, Fewer Is Better XNNPACK b7b048 Model: QS8MobileNetV2 aa b 5K 10K 15K 20K 25K 17257 25089 1. (CXX) g++ options: -O3 -lrt -lm
XNNPACK Model: FP16MobileNetV3Small OpenBenchmarking.org us, Fewer Is Better XNNPACK b7b048 Model: FP16MobileNetV3Small b aa 6K 12K 18K 24K 30K 17479 25785 1. (CXX) g++ options: -O3 -lrt -lm
XNNPACK Model: FP16MobileNetV3Large OpenBenchmarking.org us, Fewer Is Better XNNPACK b7b048 Model: FP16MobileNetV3Large b aa 6K 12K 18K 24K 30K 27079 27319 1. (CXX) g++ options: -O3 -lrt -lm
XNNPACK Model: FP16MobileNetV2 OpenBenchmarking.org us, Fewer Is Better XNNPACK b7b048 Model: FP16MobileNetV2 b aa 4K 8K 12K 16K 20K 14703 18525 1. (CXX) g++ options: -O3 -lrt -lm
XNNPACK Model: FP16MobileNetV1 OpenBenchmarking.org us, Fewer Is Better XNNPACK b7b048 Model: FP16MobileNetV1 aa b 2K 4K 6K 8K 10K 7483 10504 1. (CXX) g++ options: -O3 -lrt -lm
XNNPACK Model: FP32MobileNetV3Small OpenBenchmarking.org us, Fewer Is Better XNNPACK b7b048 Model: FP32MobileNetV3Small b aa 5K 10K 15K 20K 25K 17188 21224 1. (CXX) g++ options: -O3 -lrt -lm
XNNPACK Model: FP32MobileNetV3Large OpenBenchmarking.org us, Fewer Is Better XNNPACK b7b048 Model: FP32MobileNetV3Large b aa 5K 10K 15K 20K 25K 22324 22775 1. (CXX) g++ options: -O3 -lrt -lm
XNNPACK Model: FP32MobileNetV2 OpenBenchmarking.org us, Fewer Is Better XNNPACK b7b048 Model: FP32MobileNetV2 b aa 4K 8K 12K 16K 20K 14325 16796 1. (CXX) g++ options: -O3 -lrt -lm
XNNPACK Model: FP32MobileNetV1 OpenBenchmarking.org us, Fewer Is Better XNNPACK b7b048 Model: FP32MobileNetV1 aa b 1600 3200 4800 6400 8000 7130 7699 1. (CXX) g++ options: -O3 -lrt -lm
oneDNN Harness: Recurrent Neural Network Training - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.6 Harness: Recurrent Neural Network Training - Engine: CPU b a aa 90 180 270 360 450 SE +/- 1.16, N = 3 SE +/- 1.82, N = 3 415.62 417.02 418.84 MIN: 408.78 MIN: 406.83 MIN: 408.29 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl -lpthread
oneDNN Harness: Recurrent Neural Network Inference - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.6 Harness: Recurrent Neural Network Inference - Engine: CPU a b aa 90 180 270 360 450 SE +/- 2.03, N = 3 SE +/- 3.25, N = 3 387.46 389.99 395.49 MIN: 376.31 MIN: 376.48 MIN: 382.73 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl -lpthread
LiteRT Model: Quantized COCO SSD MobileNet v1 OpenBenchmarking.org Microseconds, Fewer Is Better LiteRT 2024-10-15 Model: Quantized COCO SSD MobileNet v1 b aa 2K 4K 6K 8K 10K SE +/- 144.17, N = 3 10308.1 10521.1
oneDNN Harness: Deconvolution Batch shapes_1d - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.6 Harness: Deconvolution Batch shapes_1d - Engine: CPU aa b a 4 8 12 16 20 SE +/- 0.07, N = 3 SE +/- 0.01, N = 3 15.39 15.75 17.82 MIN: 13.31 MIN: 13.64 MIN: 14.97 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl -lpthread
oneDNN Harness: IP Shapes 1D - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.6 Harness: IP Shapes 1D - Engine: CPU a aa b 0.1428 0.2856 0.4284 0.5712 0.714 SE +/- 0.001909, N = 3 SE +/- 0.002596, N = 3 0.631954 0.632095 0.634881 MIN: 0.57 MIN: 0.57 MIN: 0.57 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl -lpthread
oneDNN Harness: IP Shapes 3D - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.6 Harness: IP Shapes 3D - Engine: CPU a b aa 0.1032 0.2064 0.3096 0.4128 0.516 SE +/- 0.002024, N = 3 SE +/- 0.000988, N = 3 0.451791 0.453833 0.458506 MIN: 0.39 MIN: 0.4 MIN: 0.4 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl -lpthread
oneDNN Harness: Convolution Batch Shapes Auto - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.6 Harness: Convolution Batch Shapes Auto - Engine: CPU b a aa 0.0584 0.1168 0.1752 0.2336 0.292 SE +/- 0.000249, N = 3 SE +/- 0.000187, N = 3 0.257735 0.258396 0.259777 MIN: 0.25 MIN: 0.24 MIN: 0.25 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl -lpthread
oneDNN Harness: Deconvolution Batch shapes_3d - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.6 Harness: Deconvolution Batch shapes_3d - Engine: CPU aa a b 0.0968 0.1936 0.2904 0.3872 0.484 SE +/- 0.004175, N = 3 SE +/- 0.005431, N = 3 0.425348 0.429801 0.430174 MIN: 0.41 MIN: 0.41 MIN: 0.41 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -fcf-protection=full -pie -ldl -lpthread
Phoronix Test Suite v10.8.5