newa AMD Ryzen AI 9 HX 370 testing with a ASUS Zenbook S 16 UM5606WA_UM5606WA UM5606WA v1.0 (UM5606WA.308 BIOS) and AMD Radeon 512MB on Ubuntu 24.04 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2408236-NE-NEWA8391444&sor&gru .
newa Processor Motherboard Chipset Memory Disk Graphics Audio Network OS Kernel Desktop Display Server OpenGL Compiler File-System Screen Resolution a b c d AMD Ryzen AI 9 HX 370 @ 4.37GHz (12 Cores / 24 Threads) ASUS Zenbook S 16 UM5606WA_UM5606WA UM5606WA v1.0 (UM5606WA.308 BIOS) AMD Device 1507 4 x 8GB LPDDR5-7500MT/s Samsung K3KL9L90CM-MGCT 1024GB MTFDKBA1T0QFM-1BD1AABGB AMD Radeon 512MB AMD Rembrandt Radeon HD Audio MEDIATEK Device 7925 Ubuntu 24.04 6.10.0-phx (x86_64) GNOME Shell 46.0 X Server 1.21.1.11 + Wayland 4.6 Mesa 24.3~git2407230600.74b4c9~oibaf~n (git-74b4c91 2024-07-23 noble-oibaf-ppa) (LLVM 17.0.6 DRM 3.57) GCC 13.2.0 ext4 2880x1800 OpenBenchmarking.org Kernel Details - amdgpu.dcdebugmask=0x600 - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-backtrace --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-uJ7kn6/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-uJ7kn6/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - Platform Profile: balanced - CPU Microcode: 0xb204011 - ACPI Profile: balanced Python Details - Python 3.12.3 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS; IBPB: conditional; STIBP: always-on; RSB filling; PBRSB-eIBRS: Not affected; BHI: Not affected + srbds: Not affected + tsx_async_abort: Not affected
newa svt-av1: Preset 3 - Bosphorus 4K svt-av1: Preset 5 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 4K svt-av1: Preset 13 - Bosphorus 4K svt-av1: Preset 3 - Bosphorus 1080p svt-av1: Preset 5 - Bosphorus 1080p svt-av1: Preset 8 - Bosphorus 1080p svt-av1: Preset 13 - Bosphorus 1080p svt-av1: Preset 3 - Beauty 4K 10-bit svt-av1: Preset 5 - Beauty 4K 10-bit svt-av1: Preset 8 - Beauty 4K 10-bit svt-av1: Preset 13 - Beauty 4K 10-bit onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: ZFNet-512 - CPU - Parallel onnx: ZFNet-512 - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: ResNet101_DUC_HDC-12 - CPU - Parallel onnx: ResNet101_DUC_HDC-12 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: ZFNet-512 - CPU - Parallel onnx: ZFNet-512 - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: ResNet101_DUC_HDC-12 - CPU - Parallel onnx: ResNet101_DUC_HDC-12 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard whisperfile: Tiny whisperfile: Small whisperfile: Medium a b c d 3.309 13.234 27.656 106.946 11.37 42.754 103.496 440.225 0.543 2.697 4.011 10.675 102.72 122.886 3.61793 5.70412 42.6632 86.2463 146.145 161.643 5.0416 7.59373 136.319 502.181 0.921778 1.13181 10.9385 19.4691 69.9235 200.226 68.0893 70.9505 0.473424 0.517125 23.5779 35.4456 9.72552 8.12987 276.395 175.308 23.4363 11.5926 6.84002 6.18373 198.343 131.682 7.33407 1.99007 1084.85 883.536 91.4167 51.3606 14.2975 4.99245 14.6852 14.0923 2112.26 1933.76 42.4095 28.2094 54.40568 262.4125 765.35919 3.463 14.347 32.393 120.17 12.116 45.54 112.095 481.646 0.561 2.601 3.854 9.634 95.5163 110.405 3.3069 4.89908 37.5739 78.8507 129.186 162.322 4.72998 6.66153 131.268 510.917 0.865881 1.03114 10.2217 19.1579 65.8763 194.575 64.5072 66.6108 0.435521 0.488444 22.8422 34.2971 10.459 9.04782 302.388 204.116 26.6113 12.679 7.73761 6.15789 211.407 150.111 7.61522 1.95616 1154.89 969.782 97.826 52.1952 15.178 5.13748 15.4995 15.0098 2296.09 2047.31 43.775 29.1542 56.77183 271.82741 782.83619 3.151 11.827 25.738 96.951 10.744 40.065 94.108 413.091 0.503 2.488 3.729 9.588 97.8331 118.035 3.58762 5.17554 38.1591 76.8775 135.739 160.706 4.73966 6.69892 120.849 462.592 0.812788 1.02034 10.0325 17.3137 64.1998 179.429 59.9789 65.8213 0.421012 0.452827 22.033 33.016 10.2101 8.46444 278.728 193.212 26.2028 13.0048 7.36381 6.22044 210.979 149.273 8.27242 2.16038 1230.33 980.058 99.6709 57.7547 15.5736 5.57084 16.6696 15.1903 2375.22 2208.35 45.3831 30.2848 58.68302 277.32688 785.54988 3.234 11.896 26.037 98.812 10.846 43.018 97.178 430.237 0.514 2.533 3.906 10.036 99.0373 118.382 3.55341 5.90294 42.3636 84.9334 135.925 160.622 4.88633 7.21263 135.844 506.738 0.902388 1.10029 10.2254 19.305 70.6805 200.893 68.1302 70.8415 0.453065 0.517357 24.1733 35.2048 10.0859 8.43814 281.414 169.404 23.602 11.7716 7.35405 6.22279 204.648 138.641 7.35765 1.97224 1108.16 908.846 97.7898 51.7975 14.1424 4.97589 14.6757 14.1137 2207.18 1932.89 41.3647 28.402 55.21668 268.06159 761.26344 OpenBenchmarking.org
SVT-AV1 Encoder Mode: Preset 3 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 3 - Input: Bosphorus 4K b a d c 0.7792 1.5584 2.3376 3.1168 3.896 3.463 3.309 3.234 3.151 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 5 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 5 - Input: Bosphorus 4K b a d c 4 8 12 16 20 14.35 13.23 11.90 11.83 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 8 - Input: Bosphorus 4K b a d c 8 16 24 32 40 32.39 27.66 26.04 25.74 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 13 - Input: Bosphorus 4K b a d c 30 60 90 120 150 120.17 106.95 98.81 96.95 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 3 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 3 - Input: Bosphorus 1080p b a d c 3 6 9 12 15 12.12 11.37 10.85 10.74 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 5 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 5 - Input: Bosphorus 1080p b d a c 10 20 30 40 50 45.54 43.02 42.75 40.07 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 8 - Input: Bosphorus 1080p b a d c 30 60 90 120 150 112.10 103.50 97.18 94.11 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 13 - Input: Bosphorus 1080p b a d c 100 200 300 400 500 481.65 440.23 430.24 413.09 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 3 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 3 - Input: Beauty 4K 10-bit b a d c 0.1262 0.2524 0.3786 0.5048 0.631 0.561 0.543 0.514 0.503 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 5 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 5 - Input: Beauty 4K 10-bit a b d c 0.6068 1.2136 1.8204 2.4272 3.034 2.697 2.601 2.533 2.488 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 8 - Input: Beauty 4K 10-bit a d b c 0.9025 1.805 2.7075 3.61 4.5125 4.011 3.906 3.854 3.729 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 13 - Input: Beauty 4K 10-bit a d b c 3 6 9 12 15 10.675 10.036 9.634 9.588 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Parallel a d c b 20 40 60 80 100 102.72 99.04 97.83 95.52 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Standard a d c b 30 60 90 120 150 122.89 118.38 118.04 110.41 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Parallel a c d b 0.814 1.628 2.442 3.256 4.07 3.61793 3.58762 3.55341 3.30690 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Standard d a c b 1.3282 2.6564 3.9846 5.3128 6.641 5.90294 5.70412 5.17554 4.89908 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Parallel a d c b 10 20 30 40 50 42.66 42.36 38.16 37.57 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Standard a d b c 20 40 60 80 100 86.25 84.93 78.85 76.88 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Parallel a d c b 30 60 90 120 150 146.15 135.93 135.74 129.19 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Standard b a c d 40 80 120 160 200 162.32 161.64 160.71 160.62 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Parallel a d c b 1.1344 2.2688 3.4032 4.5376 5.672 5.04160 4.88633 4.73966 4.72998 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Standard a d c b 2 4 6 8 10 7.59373 7.21263 6.69892 6.66153 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a d b c 30 60 90 120 150 136.32 135.84 131.27 120.85 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard b d a c 110 220 330 440 550 510.92 506.74 502.18 462.59 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a d b c 0.2074 0.4148 0.6222 0.8296 1.037 0.921778 0.902388 0.865881 0.812788 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a d b c 0.2547 0.5094 0.7641 1.0188 1.2735 1.13181 1.10029 1.03114 1.02034 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a d b c 3 6 9 12 15 10.94 10.23 10.22 10.03 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a d b c 5 10 15 20 25 19.47 19.31 19.16 17.31 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel d a b c 16 32 48 64 80 70.68 69.92 65.88 64.20 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard d a b c 40 80 120 160 200 200.89 200.23 194.58 179.43 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Parallel d a b c 15 30 45 60 75 68.13 68.09 64.51 59.98 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Standard a d b c 16 32 48 64 80 70.95 70.84 66.61 65.82 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel a d b c 0.1065 0.213 0.3195 0.426 0.5325 0.473424 0.453065 0.435521 0.421012 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard d a b c 0.1164 0.2328 0.3492 0.4656 0.582 0.517357 0.517125 0.488444 0.452827 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel d a b c 6 12 18 24 30 24.17 23.58 22.84 22.03 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a d b c 8 16 24 32 40 35.45 35.20 34.30 33.02 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Parallel a d c b 3 6 9 12 15 9.72552 10.08590 10.21010 10.45900 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Standard a d c b 3 6 9 12 15 8.12987 8.43814 8.46444 9.04782 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Parallel a c d b 70 140 210 280 350 276.40 278.73 281.41 302.39 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Standard d a c b 40 80 120 160 200 169.40 175.31 193.21 204.12 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Parallel a d c b 6 12 18 24 30 23.44 23.60 26.20 26.61 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Standard a d b c 3 6 9 12 15 11.59 11.77 12.68 13.00 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Parallel a d c b 2 4 6 8 10 6.84002 7.35405 7.36381 7.73761 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Standard b a c d 2 4 6 8 10 6.15789 6.18373 6.22044 6.22279 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Parallel a d c b 50 100 150 200 250 198.34 204.65 210.98 211.41 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Standard a d c b 30 60 90 120 150 131.68 138.64 149.27 150.11 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a d b c 2 4 6 8 10 7.33407 7.35765 7.61522 8.27242 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard b d a c 0.4861 0.9722 1.4583 1.9444 2.4305 1.95616 1.97224 1.99007 2.16038 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a d b c 300 600 900 1200 1500 1084.85 1108.16 1154.89 1230.33 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a d b c 200 400 600 800 1000 883.54 908.85 969.78 980.06 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a d b c 20 40 60 80 100 91.42 97.79 97.83 99.67 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a d b c 13 26 39 52 65 51.36 51.80 52.20 57.75 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel d a b c 4 8 12 16 20 14.14 14.30 15.18 15.57 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard d a b c 1.2534 2.5068 3.7602 5.0136 6.267 4.97589 4.99245 5.13748 5.57084 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Parallel d a b c 4 8 12 16 20 14.68 14.69 15.50 16.67 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Standard a d b c 4 8 12 16 20 14.09 14.11 15.01 15.19 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel a d b c 500 1000 1500 2000 2500 2112.26 2207.18 2296.09 2375.22 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard d a b c 500 1000 1500 2000 2500 1932.89 1933.76 2047.31 2208.35 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel d a b c 10 20 30 40 50 41.36 42.41 43.78 45.38 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a d b c 7 14 21 28 35 28.21 28.40 29.15 30.28 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
Whisperfile Model Size: Tiny OpenBenchmarking.org Seconds, Fewer Is Better Whisperfile 20Aug24 Model Size: Tiny a d b c 13 26 39 52 65 54.41 55.22 56.77 58.68
Whisperfile Model Size: Small OpenBenchmarking.org Seconds, Fewer Is Better Whisperfile 20Aug24 Model Size: Small a d b c 60 120 180 240 300 262.41 268.06 271.83 277.33
Whisperfile Model Size: Medium OpenBenchmarking.org Seconds, Fewer Is Better Whisperfile 20Aug24 Model Size: Medium d a b c 200 400 600 800 1000 761.26 765.36 782.84 785.55
Phoronix Test Suite v10.8.5