resultgangutlx AMD Ryzen 5 5600G testing with a Gigabyte B450M DS3H-CF (F63c BIOS) and NVIDIA RTX A4000 16GB on Ubuntu 24.04 via the Phoronix Test Suite. AMD Ryzen 5 5600G - NVIDIA RTX A4000 16GB - Gigabyte: Processor: AMD Ryzen 5 5600G @ 4.46GHz (6 Cores / 12 Threads), Motherboard: Gigabyte B450M DS3H-CF (F63c BIOS), Chipset: AMD Renoir/Cezanne, Memory: 24GB, Disk: Patriot M.2 P300 512GB + 1024GB ADATA SX6000LNP + 2048GB XPG GAMMIX S11 Pro, Graphics: NVIDIA RTX A4000 16GB, Audio: NVIDIA GA104 HD Audio, Monitor: DP1 + LG ULTRAWIDE, Network: Realtek RTL8111/8168/8211/8411 OS: Ubuntu 24.04, Kernel: 6.8.0-39-generic (x86_64), Desktop: Xfce 4.18, Display Server: X Server 1.21.1.11, Display Driver: NVIDIA 560.28.03, OpenGL: 4.6.0, Compiler: GCC 13.2.0 + CUDA 12.6, File-System: ext4, Screen Resolution: 6000x1440 PyTorch 2.2.1 Device: CPU - Batch Size: 256 - Model: ResNet-50 batches/sec > Higher Is Better AMD Ryzen 5 5600G - NVIDIA RTX A4000 16GB - Gigabyte . 13.65 |================= PyTorch 2.2.1 Device: CPU - Batch Size: 1 - Model: ResNet-50 batches/sec > Higher Is Better AMD Ryzen 5 5600G - NVIDIA RTX A4000 16GB - Gigabyte . 24.73 |================= PyTorch 2.2.1 Device: CPU - Batch Size: 512 - Model: ResNet-50 batches/sec > Higher Is Better AMD Ryzen 5 5600G - NVIDIA RTX A4000 16GB - Gigabyte . 15.06 |================= PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: ResNet-50 batches/sec > Higher Is Better AMD Ryzen 5 5600G - NVIDIA RTX A4000 16GB - Gigabyte . 13.74 |================= PyTorch 2.2.1 Device: CPU - Batch Size: 32 - Model: ResNet-50 batches/sec > Higher Is Better AMD Ryzen 5 5600G - NVIDIA RTX A4000 16GB - Gigabyte . 13.94 |================= PyTorch 2.2.1 Device: CPU - Batch Size: 64 - Model: ResNet-50 batches/sec > Higher Is Better AMD Ryzen 5 5600G - NVIDIA RTX A4000 16GB - Gigabyte . 14.74 |================= PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-50 batches/sec > Higher Is Better AMD Ryzen 5 5600G - NVIDIA RTX A4000 16GB - Gigabyte . 179.99 |================ PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-50 batches/sec > Higher Is Better AMD Ryzen 5 5600G - NVIDIA RTX A4000 16GB - Gigabyte . 168.86 |================ PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-50 batches/sec > Higher Is Better AMD Ryzen 5 5600G - NVIDIA RTX A4000 16GB - Gigabyte . 183.79 |================ PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-50 batches/sec > Higher Is Better AMD Ryzen 5 5600G - NVIDIA RTX A4000 16GB - Gigabyte . 179.98 |================ PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-50 batches/sec > Higher Is Better AMD Ryzen 5 5600G - NVIDIA RTX A4000 16GB - Gigabyte . 183.04 |================ PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-50 batches/sec > Higher Is Better AMD Ryzen 5 5600G - NVIDIA RTX A4000 16GB - Gigabyte . 184.99 |================