m7g.8xlarge

amazon testing on Ubuntu 22.04 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2407019-NE-M7G8XLARG55&grs.

m7g.8xlargeProcessorMotherboardChipsetMemoryDiskNetworkOSKernelVulkanCompilerFile-SystemSystem Layerm7g.8xlargeARMv8 Neoverse-V1 (32 Cores)Amazon EC2 m7g.8xlarge (1.0 BIOS)Amazon Device 0200128GB537GB Amazon Elastic Block StoreAmazon ElasticUbuntu 22.046.5.0-1017-aws (aarch64)1.3.255GCC 11.4.0ext4amazonOpenBenchmarking.org- Transparent Huge Pages: madvise- --build=aarch64-linux-gnu --disable-libquadmath --disable-libquadmath-support --disable-werror --enable-bootstrap --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-fix-cortex-a53-843419 --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-nls --enable-objc-gc=auto --enable-plugin --enable-shared --enable-threads=posix --host=aarch64-linux-gnu --program-prefix=aarch64-linux-gnu- --target=aarch64-linux-gnu --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-target-system-zlib=auto -v - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of __user pointer sanitization + spectre_v2: Mitigation of CSV2 BHB + srbds: Not affected + tsx_async_abort: Not affected

m7g.8xlargedeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Streamdeepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Streamdeepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Streamdeepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streammlpack: scikit_linearridgeregressionmlpack: scikit_svmmlpack: scikit_qdamlpack: scikit_icaonednn: Recurrent Neural Network Inference - CPUonednn: Recurrent Neural Network Training - CPUonednn: Deconvolution Batch shapes_3d - CPUonednn: Deconvolution Batch shapes_1d - CPUonednn: Convolution Batch Shapes Auto - CPUonednn: IP Shapes 1D - CPUopencv: Object Detectionopencv: Image Processingopencv: Features 2Dopencv: Stitchingopencv: Videoopencv: Coreopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Noise Suppression Poconet-Like FP16 - CPUopenvino: Noise Suppression Poconet-Like FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: super-resolution-10 - CPU - Standardonnx: super-resolution-10 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Standardonnx: fcn-resnet101-11 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Parallelonnx: bertsquad-12 - CPU - Standardonnx: bertsquad-12 - CPU - Parallelonnx: T5 Encoder - CPU - Standardonnx: T5 Encoder - CPU - Parallelonnx: yolov4 - CPU - Standardonnx: yolov4 - CPU - Parallelonnx: GPT-2 - CPU - Standardonnx: GPT-2 - CPU - Parallelwhisper-cpp: ggml-medium.en - 2016 State of the Unionwhisper-cpp: ggml-small.en - 2016 State of the Unionwhisper-cpp: ggml-base.en - 2016 State of the Unionllama-cpp: Meta-Llama-3-8B-Instruct-Q8_0.ggufonednn: IP Shapes 3D - CPUopencv: DNN - Deep Neural Networkonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: super-resolution-10 - CPU - Standardonnx: super-resolution-10 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Standardonnx: fcn-resnet101-11 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Parallelonnx: bertsquad-12 - CPU - Standardonnx: bertsquad-12 - CPU - Parallelonnx: T5 Encoder - CPU - Standardonnx: T5 Encoder - CPU - Parallelonnx: yolov4 - CPU - Standardonnx: yolov4 - CPU - Parallelonnx: GPT-2 - CPU - Standardonnx: GPT-2 - CPU - Parallelm7g.8xlarge96.810210.32801498.919310.322515.863162.975791.6242173.938580.729612.38361105.383914.320113.530173.8416164.792196.535417.732956.3498239.372666.42149.1805108.7471107.5853148.091059.568816.77754083.76583.67472.4132412.773416.1855984.14609.1766108.7917107.4825148.17044.9453201.718139.4253404.736296.832710.32561500.496110.39381.7016.8720.4833.723943.277798.2913.772664.400310.58366.50449272611052925474328448022760969642.053886.78201.6539.622.093808.1322.98347.81185.8443.01113.1670.6725.39314.9224.07332.14170.4846.87492.9116.2148.17166.0214.70543.78154.8651.6370.31113.708.84903.293042.172.5826.78298.31376.8021.20377.3121.172151.543.686.260205.7644879.081478.2163254.500182.87818.152011.34291.420241.13658929.208385.45718.43868.97560352.803229.6298.852094.59152216.383144.421439.61170179.7301481.6095022.474.5261923459159.755173.47412.642912.78393.928095.4667255.087088.1604704.104879.8761.074502.5927254.2290111.4182.831104.35358112.963217.8184.612606.91744OpenBenchmarking.org

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamm7g.8xlarge20406080100SE +/- 0.01, N = 396.81

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamm7g.8xlarge3691215SE +/- 0.00, N = 310.33

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamm7g.8xlarge30060090012001500SE +/- 0.08, N = 31498.92

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamm7g.8xlarge3691215SE +/- 0.00, N = 310.32

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge48121620SE +/- 0.08, N = 315.86

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge1428425670SE +/- 0.30, N = 362.98

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge20406080100SE +/- 0.12, N = 391.62

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge4080120160200SE +/- 0.23, N = 3173.94

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamm7g.8xlarge20406080100SE +/- 0.05, N = 380.73

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamm7g.8xlarge3691215SE +/- 0.01, N = 312.38

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamm7g.8xlarge2004006008001000SE +/- 1.76, N = 31105.38

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamm7g.8xlarge48121620SE +/- 0.03, N = 314.32

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamm7g.8xlarge3691215SE +/- 0.00, N = 313.53

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamm7g.8xlarge1632486480SE +/- 0.02, N = 373.84

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamm7g.8xlarge4080120160200SE +/- 0.02, N = 3164.79

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamm7g.8xlarge20406080100SE +/- 0.04, N = 396.54

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge48121620SE +/- 0.01, N = 317.73

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge1326395265SE +/- 0.02, N = 356.35

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge50100150200250SE +/- 0.03, N = 3239.37

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge1530456075SE +/- 0.02, N = 366.42

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamm7g.8xlarge3691215SE +/- 0.0009, N = 39.1805

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamm7g.8xlarge20406080100SE +/- 0.01, N = 3108.75

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamm7g.8xlarge20406080100SE +/- 0.04, N = 3107.59

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamm7g.8xlarge306090120150SE +/- 0.02, N = 3148.09

Neural Magic DeepSparse

Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Streamm7g.8xlarge1326395265SE +/- 0.05, N = 359.57

Neural Magic DeepSparse

Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Streamm7g.8xlarge48121620SE +/- 0.01, N = 316.78

Neural Magic DeepSparse

Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Streamm7g.8xlarge9001800270036004500SE +/- 7.23, N = 34083.77

Neural Magic DeepSparse

Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Streamm7g.8xlarge0.82681.65362.48043.30724.134SE +/- 0.0071, N = 33.6747

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge0.5431.0861.6292.1722.715SE +/- 0.0089, N = 32.4132

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge90180270360450SE +/- 1.54, N = 3412.77

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge48121620SE +/- 0.01, N = 316.19

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge2004006008001000SE +/- 0.55, N = 3984.15

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamm7g.8xlarge3691215SE +/- 0.0025, N = 39.1766

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamm7g.8xlarge20406080100SE +/- 0.03, N = 3108.79

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamm7g.8xlarge20406080100SE +/- 0.02, N = 3107.48

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamm7g.8xlarge306090120150SE +/- 0.05, N = 3148.17

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge1.11272.22543.33814.45085.5635SE +/- 0.0052, N = 34.9453

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamm7g.8xlarge4080120160200SE +/- 0.22, N = 3201.72

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge918273645SE +/- 0.03, N = 339.43

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamm7g.8xlarge90180270360450SE +/- 0.33, N = 3404.74

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamm7g.8xlarge20406080100SE +/- 0.03, N = 396.83

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamm7g.8xlarge3691215SE +/- 0.00, N = 310.33

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamm7g.8xlarge30060090012001500SE +/- 0.95, N = 31500.50

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamm7g.8xlarge3691215SE +/- 0.08, N = 310.39

Mlpack Benchmark

Benchmark: scikit_linearridgeregression

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_linearridgeregressionm7g.8xlarge0.38250.7651.14751.531.9125SE +/- 0.00, N = 31.70

Mlpack Benchmark

Benchmark: scikit_svm

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_svmm7g.8xlarge48121620SE +/- 0.02, N = 316.87

Mlpack Benchmark

Benchmark: scikit_qda

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_qdam7g.8xlarge510152025SE +/- 0.09, N = 320.48

Mlpack Benchmark

Benchmark: scikit_ica

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_icam7g.8xlarge816243240SE +/- 0.05, N = 333.72

oneDNN

Harness: Recurrent Neural Network Inference - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Inference - Engine: CPUm7g.8xlarge8001600240032004000SE +/- 12.89, N = 33943.27MIN: 3910.41. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

oneDNN

Harness: Recurrent Neural Network Training - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Training - Engine: CPUm7g.8xlarge2K4K6K8K10KSE +/- 80.29, N = 37798.29MIN: 7620.61. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

oneDNN

Harness: Deconvolution Batch shapes_3d - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_3d - Engine: CPUm7g.8xlarge48121620SE +/- 0.01, N = 313.77MIN: 13.691. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

oneDNN

Harness: Deconvolution Batch shapes_1d - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_1d - Engine: CPUm7g.8xlarge1428425670SE +/- 0.08, N = 364.40MIN: 64.091. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

oneDNN

Harness: Convolution Batch Shapes Auto - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Convolution Batch Shapes Auto - Engine: CPUm7g.8xlarge3691215SE +/- 0.02, N = 310.58MIN: 10.451. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

oneDNN

Harness: IP Shapes 1D - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 1D - Engine: CPUm7g.8xlarge246810SE +/- 0.00772, N = 36.50449MIN: 6.421. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

OpenCV

Test: Object Detection

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Object Detectionm7g.8xlarge6K12K18K24K30KSE +/- 75.10, N = 3272611. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenCV

Test: Image Processing

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Image Processingm7g.8xlarge20K40K60K80K100KSE +/- 282.17, N = 31052921. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenCV

Test: Features 2D

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Features 2Dm7g.8xlarge12K24K36K48K60KSE +/- 267.56, N = 3547431. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenCV

Test: Stitching

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Stitchingm7g.8xlarge60K120K180K240K300KSE +/- 284.51, N = 32844801. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenCV

Test: Video

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Videom7g.8xlarge5K10K15K20K25KSE +/- 92.56, N = 3227601. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenCV

Test: Core

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Corem7g.8xlarge20K40K60K80K100KSE +/- 663.91, N = 3969641. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUm7g.8xlarge0.46130.92261.38391.84522.3065SE +/- 0.00, N = 32.05MIN: 1.28 / MAX: 23.681. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUm7g.8xlarge8001600240032004000SE +/- 2.45, N = 33886.781. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Handwritten English Recognition FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUm7g.8xlarge4080120160200SE +/- 0.38, N = 3201.65MIN: 199.37 / MAX: 225.021. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Handwritten English Recognition FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUm7g.8xlarge918273645SE +/- 0.07, N = 339.621. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUm7g.8xlarge0.47030.94061.41091.88122.3515SE +/- 0.00, N = 32.09MIN: 1 / MAX: 26.971. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUm7g.8xlarge8001600240032004000SE +/- 1.81, N = 33808.131. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Re-Identification Retail FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUm7g.8xlarge612182430SE +/- 0.07, N = 322.98MIN: 16.5 / MAX: 41.021. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Re-Identification Retail FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUm7g.8xlarge80160240320400SE +/- 1.11, N = 3347.811. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Handwritten English Recognition FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUm7g.8xlarge4080120160200SE +/- 0.75, N = 3185.84MIN: 183.08 / MAX: 211.711. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Handwritten English Recognition FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUm7g.8xlarge1020304050SE +/- 0.18, N = 343.011. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Noise Suppression Poconet-Like FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUm7g.8xlarge306090120150SE +/- 0.04, N = 3113.16MIN: 110.94 / MAX: 150.981. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Noise Suppression Poconet-Like FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUm7g.8xlarge1632486480SE +/- 0.02, N = 370.671. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Vehicle Bike Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUm7g.8xlarge612182430SE +/- 0.32, N = 325.39MIN: 22.51 / MAX: 39.781. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Vehicle Bike Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUm7g.8xlarge70140210280350SE +/- 3.87, N = 3314.921. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUm7g.8xlarge612182430SE +/- 0.12, N = 324.07MIN: 22.31 / MAX: 225.531. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUm7g.8xlarge70140210280350SE +/- 1.64, N = 3332.141. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Machine Translation EN To DE FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUm7g.8xlarge4080120160200SE +/- 0.08, N = 3170.48MIN: 154.07 / MAX: 334.21. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Machine Translation EN To DE FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUm7g.8xlarge1122334455SE +/- 0.02, N = 346.871. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Road Segmentation ADAS FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUm7g.8xlarge110220330440550SE +/- 0.48, N = 3492.91MIN: 489.58 / MAX: 526.431. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Road Segmentation ADAS FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUm7g.8xlarge48121620SE +/- 0.01, N = 316.211. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUm7g.8xlarge1122334455SE +/- 0.04, N = 348.17MIN: 46.88 / MAX: 54.741. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUm7g.8xlarge4080120160200SE +/- 0.13, N = 3166.021. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUm7g.8xlarge48121620SE +/- 0.02, N = 314.70MIN: 11.59 / MAX: 168.151. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUm7g.8xlarge120240360480600SE +/- 0.86, N = 3543.781. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Vehicle Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUm7g.8xlarge306090120150SE +/- 0.32, N = 3154.86MIN: 152.55 / MAX: 178.821. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Vehicle Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUm7g.8xlarge1224364860SE +/- 0.11, N = 351.631. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Road Segmentation ADAS FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUm7g.8xlarge1632486480SE +/- 0.09, N = 370.31MIN: 53.97 / MAX: 122.981. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Road Segmentation ADAS FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUm7g.8xlarge306090120150SE +/- 0.14, N = 3113.701. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUm7g.8xlarge246810SE +/- 0.00, N = 38.84MIN: 7.91 / MAX: 16.481. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUm7g.8xlarge2004006008001000SE +/- 0.28, N = 3903.291. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUm7g.8xlarge7001400210028003500SE +/- 1.31, N = 33042.17MIN: 2748.48 / MAX: 4882.421. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUm7g.8xlarge0.58051.1611.74152.3222.9025SE +/- 0.00, N = 32.581. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Vehicle Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUm7g.8xlarge612182430SE +/- 0.04, N = 326.78MIN: 23.25 / MAX: 51.981. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Vehicle Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUm7g.8xlarge60120180240300SE +/- 0.45, N = 3298.311. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Detection FP32 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUm7g.8xlarge80160240320400SE +/- 0.30, N = 3376.80MIN: 207.53 / MAX: 510.751. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Detection FP32 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUm7g.8xlarge510152025SE +/- 0.02, N = 321.201. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUm7g.8xlarge80160240320400SE +/- 0.20, N = 3377.31MIN: 235.41 / MAX: 510.121. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUm7g.8xlarge510152025SE +/- 0.01, N = 321.171. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUm7g.8xlarge5001000150020002500SE +/- 2.66, N = 32151.54MIN: 1728.64 / MAX: 4274.631. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUm7g.8xlarge0.8281.6562.4843.3124.14SE +/- 0.01, N = 33.681. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standardm7g.8xlarge246810SE +/- 0.05082, N = 36.260201. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallelm7g.8xlarge1.2972.5943.8915.1886.485SE +/- 0.00787, N = 35.764481. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Standardm7g.8xlarge20406080100SE +/- 0.09, N = 379.081. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Parallelm7g.8xlarge20406080100SE +/- 0.04, N = 378.221. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standardm7g.8xlarge60120180240300SE +/- 0.57, N = 3254.501. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallelm7g.8xlarge4080120160200SE +/- 0.35, N = 3182.881. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Standardm7g.8xlarge48121620SE +/- 0.01, N = 318.151. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallelm7g.8xlarge3691215SE +/- 0.03, N = 311.341. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Standardm7g.8xlarge0.31960.63920.95881.27841.598SE +/- 0.00084, N = 31.420241. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Parallelm7g.8xlarge0.25570.51140.76711.02281.2785SE +/- 0.00545, N = 31.136581. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Standardm7g.8xlarge2004006008001000SE +/- 0.48, N = 3929.211. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallelm7g.8xlarge80160240320400SE +/- 0.75, N = 3385.461. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Standardm7g.8xlarge510152025SE +/- 0.02, N = 318.441. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Parallelm7g.8xlarge3691215SE +/- 0.05195, N = 38.975601. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: T5 Encoder - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Standardm7g.8xlarge80160240320400SE +/- 2.01, N = 3352.801. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: T5 Encoder - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Parallelm7g.8xlarge50100150200250SE +/- 0.81, N = 3229.631. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: yolov4 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Standardm7g.8xlarge246810SE +/- 0.00106, N = 38.852091. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: yolov4 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Parallelm7g.8xlarge1.03312.06623.09934.13245.1655SE +/- 0.03681, N = 34.591521. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Standardm7g.8xlarge50100150200250SE +/- 0.50, N = 3216.381. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Parallelm7g.8xlarge306090120150SE +/- 0.17, N = 3144.421. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

Whisper.cpp

Model: ggml-medium.en - Input: 2016 State of the Union

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-medium.en - Input: 2016 State of the Unionm7g.8xlarge100200300400500SE +/- 5.49, N = 9439.611. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -mcpu=native

Whisper.cpp

Model: ggml-small.en - Input: 2016 State of the Union

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-small.en - Input: 2016 State of the Unionm7g.8xlarge4080120160200SE +/- 2.02, N = 4179.731. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -mcpu=native

Whisper.cpp

Model: ggml-base.en - Input: 2016 State of the Union

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-base.en - Input: 2016 State of the Unionm7g.8xlarge20406080100SE +/- 0.69, N = 1581.611. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -mcpu=native

Llama.cpp

Model: Meta-Llama-3-8B-Instruct-Q8_0.gguf

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b3067Model: Meta-Llama-3-8B-Instruct-Q8_0.ggufm7g.8xlarge510152025SE +/- 0.14, N = 322.471. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -mcpu=native -lopenblas

oneDNN

Harness: IP Shapes 3D - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 3D - Engine: CPUm7g.8xlarge1.01842.03683.05524.07365.092SE +/- 0.12704, N = 154.52619MIN: 4.131. (CXX) g++ options: -O3 -march=native -fopenmp -mcpu=generic -fPIC -pie -ldl

OpenCV

Test: DNN - Deep Neural Network

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: DNN - Deep Neural Networkm7g.8xlarge5K10K15K20K25KSE +/- 427.59, N = 15234591. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standardm7g.8xlarge4080120160200SE +/- 1.31, N = 3159.761. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallelm7g.8xlarge4080120160200SE +/- 0.24, N = 3173.471. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Standardm7g.8xlarge3691215SE +/- 0.01, N = 312.641. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Parallelm7g.8xlarge3691215SE +/- 0.01, N = 312.781. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standardm7g.8xlarge0.88381.76762.65143.53524.419SE +/- 0.00884, N = 33.928091. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallelm7g.8xlarge1.232.463.694.926.15SE +/- 0.01039, N = 35.466721. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Standardm7g.8xlarge1224364860SE +/- 0.02, N = 355.091. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallelm7g.8xlarge20406080100SE +/- 0.24, N = 388.161. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Standardm7g.8xlarge150300450600750SE +/- 0.42, N = 3704.101. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Parallelm7g.8xlarge2004006008001000SE +/- 4.21, N = 3879.881. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Standardm7g.8xlarge0.24180.48360.72540.96721.209SE +/- 0.00052, N = 31.074501. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallelm7g.8xlarge0.58341.16681.75022.33362.917SE +/- 0.00506, N = 32.592721. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Standardm7g.8xlarge1224364860SE +/- 0.06, N = 354.231. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Parallelm7g.8xlarge20406080100SE +/- 0.64, N = 3111.421. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: T5 Encoder - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Standardm7g.8xlarge0.6371.2741.9112.5483.185SE +/- 0.01609, N = 32.831101. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: T5 Encoder - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Parallelm7g.8xlarge0.97961.95922.93883.91844.898SE +/- 0.01533, N = 34.353581. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: yolov4 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Standardm7g.8xlarge306090120150SE +/- 0.01, N = 3112.961. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: yolov4 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Parallelm7g.8xlarge50100150200250SE +/- 1.73, N = 3217.821. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Standardm7g.8xlarge1.03782.07563.11344.15125.189SE +/- 0.01049, N = 34.612601. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Parallelm7g.8xlarge246810SE +/- 0.00806, N = 36.917441. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt


Phoronix Test Suite v10.8.5