5900hx eo q1 AMD Ryzen 9 5900HX testing with a ASUS ROG Strix G513QY_G513QY G513QY v1.0 (G513QY.318 BIOS) and ASUS AMD Cezanne 512MB on Ubuntu 22.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2403293-PTS-5900HXEO01 .
5900hx eo q1 Processor Motherboard Chipset Memory Disk Graphics Audio Monitor Network OS Kernel Desktop Display Server OpenGL Vulkan Compiler File-System Screen Resolution a b AMD Ryzen 9 5900HX @ 3.30GHz (8 Cores / 16 Threads) ASUS ROG Strix G513QY_G513QY G513QY v1.0 (G513QY.318 BIOS) AMD Renoir/Cezanne 2 x 8GB DDR4-3200MT/s Micron 4ATF1G64HZ-3G2E2 512GB SAMSUNG MZVLQ512HBLU-00B00 ASUS AMD Cezanne 512MB (2500/1000MHz) AMD Navi 21/23 LQ156M1JW25 Realtek RTL8111/8168/8411 + MEDIATEK MT7921 802.11ax PCI Ubuntu 22.10 5.19.0-46-generic (x86_64) GNOME Shell 43.0 X Server 1.21.1.4 + Wayland 4.6 Mesa 22.2.5 (LLVM 15.0.2 DRM 3.47) 1.3.224 GCC 12.2.0 ext4 1920x1080 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-U8K4Qv/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-U8K4Qv/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - Platform Profile: balanced - CPU Microcode: 0xa50000c - ACPI Profile: balanced Python Details - Python 3.10.7 Security Details - itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
5900hx eo q1 svt-av1: Preset 4 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 4K svt-av1: Preset 12 - Bosphorus 4K svt-av1: Preset 13 - Bosphorus 4K svt-av1: Preset 4 - Bosphorus 1080p svt-av1: Preset 8 - Bosphorus 1080p svt-av1: Preset 12 - Bosphorus 1080p svt-av1: Preset 13 - Bosphorus 1080p stockfish: Chess Benchmark build-mesa: Time To Compile primesieve: 1e12 pytorch: CPU - 1 - ResNet-50 pytorch: CPU - 1 - ResNet-152 pytorch: CPU - 16 - ResNet-50 pytorch: CPU - 32 - ResNet-50 pytorch: CPU - 64 - ResNet-50 pytorch: CPU - 16 - ResNet-152 pytorch: CPU - 32 - ResNet-152 pytorch: CPU - 64 - ResNet-152 pytorch: CPU - 1 - Efficientnet_v2_l pytorch: CPU - 16 - Efficientnet_v2_l pytorch: CPU - 32 - Efficientnet_v2_l pytorch: CPU - 64 - Efficientnet_v2_l tensorflow: CPU - 1 - AlexNet tensorflow: CPU - 16 - AlexNet tensorflow: CPU - 32 - AlexNet tensorflow: CPU - 64 - AlexNet tensorflow: CPU - 1 - GoogLeNet tensorflow: CPU - 1 - ResNet-50 tensorflow: CPU - 16 - GoogLeNet tensorflow: CPU - 16 - ResNet-50 tensorflow: CPU - 32 - GoogLeNet tensorflow: CPU - 32 - ResNet-50 tensorflow: CPU - 64 - GoogLeNet tensorflow: CPU - 64 - ResNet-50 blender: BMW27 - CPU-Only blender: Junkshop - CPU-Only blender: Classroom - CPU-Only blender: Fishy Cat - CPU-Only blender: Barbershop - CPU-Only blender: Pabellon Barcelona - CPU-Only brl-cad: VGR Performance Metric a b 3.635 26.055 64.012 65.498 12.928 86.626 285.015 329.497 11509974 44.555 19.271 33.77 15.49 19.76 19.66 20.11 9.21 9.15 8.67 9.33 6.22 6.22 6.22 4.61 41.54 57.09 69.68 13.04 5.33 21.87 7.85 21.78 7.72 21.68 7.69 152.81 208.77 395.99 186.33 1474.59 481.62 155860 3.654 25.999 62.739 64.383 13.026 83.871 266.973 332.898 12942804 43.986 19.252 33.06 15.18 19.22 20.77 18.59 9.17 8.69 9.34 9.55 6.34 6.18 5.90 4.72 42.63 58.04 70.84 13.2 5.48 22.1 7.87 21.9 7.8 21.83 7.84 154.22 208.69 397.59 185.76 1490.95 482.13 155503 OpenBenchmarking.org
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 4 - Input: Bosphorus 4K a b 0.8222 1.6444 2.4666 3.2888 4.111 3.635 3.654 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 8 - Input: Bosphorus 4K a b 6 12 18 24 30 26.06 26.00 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 12 - Input: Bosphorus 4K a b 14 28 42 56 70 64.01 62.74 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 13 - Input: Bosphorus 4K a b 15 30 45 60 75 65.50 64.38 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 4 - Input: Bosphorus 1080p a b 3 6 9 12 15 12.93 13.03 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 8 - Input: Bosphorus 1080p a b 20 40 60 80 100 86.63 83.87 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 12 - Input: Bosphorus 1080p a b 60 120 180 240 300 285.02 266.97 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 13 - Input: Bosphorus 1080p a b 70 140 210 280 350 329.50 332.90 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
Stockfish Chess Benchmark OpenBenchmarking.org Nodes Per Second, More Is Better Stockfish 16.1 Chess Benchmark a b 3M 6M 9M 12M 15M 11509974 12942804 1. (CXX) g++ options: -lgcov -m64 -lpthread -fno-exceptions -std=c++17 -fno-peel-loops -fno-tracer -pedantic -O3 -funroll-loops -msse -msse3 -mpopcnt -mavx2 -mbmi -msse4.1 -mssse3 -msse2 -mbmi2 -flto -flto-partition=one -flto=jobserver
Timed Mesa Compilation Time To Compile OpenBenchmarking.org Seconds, Fewer Is Better Timed Mesa Compilation 24.0 Time To Compile a b 10 20 30 40 50 44.56 43.99
Primesieve Length: 1e12 OpenBenchmarking.org Seconds, Fewer Is Better Primesieve 12.1 Length: 1e12 a b 5 10 15 20 25 19.27 19.25 1. (CXX) g++ options: -O3
PyTorch Device: CPU - Batch Size: 1 - Model: ResNet-50 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 1 - Model: ResNet-50 a b 8 16 24 32 40 33.77 33.06 MIN: 28.4 / MAX: 36.15 MIN: 24.65 / MAX: 35.35
PyTorch Device: CPU - Batch Size: 1 - Model: ResNet-152 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 1 - Model: ResNet-152 a b 4 8 12 16 20 15.49 15.18 MIN: 13.24 / MAX: 15.91 MIN: 12.92 / MAX: 16.18
PyTorch Device: CPU - Batch Size: 16 - Model: ResNet-50 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: ResNet-50 a b 5 10 15 20 25 19.76 19.22 MIN: 18.28 / MAX: 20.45 MIN: 17.83 / MAX: 19.83
PyTorch Device: CPU - Batch Size: 32 - Model: ResNet-50 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 32 - Model: ResNet-50 a b 5 10 15 20 25 19.66 20.77 MIN: 18.64 / MAX: 20.3 MIN: 17.08 / MAX: 21.79
PyTorch Device: CPU - Batch Size: 64 - Model: ResNet-50 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 64 - Model: ResNet-50 a b 5 10 15 20 25 20.11 18.59 MIN: 18.97 / MAX: 21.46 MIN: 17.92 / MAX: 18.9
PyTorch Device: CPU - Batch Size: 16 - Model: ResNet-152 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: ResNet-152 a b 3 6 9 12 15 9.21 9.17 MIN: 8.4 / MAX: 9.79 MIN: 7.84 / MAX: 9.75
PyTorch Device: CPU - Batch Size: 32 - Model: ResNet-152 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 32 - Model: ResNet-152 a b 3 6 9 12 15 9.15 8.69 MIN: 8.27 / MAX: 9.72 MIN: 8.29 / MAX: 9.38
PyTorch Device: CPU - Batch Size: 64 - Model: ResNet-152 OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 64 - Model: ResNet-152 a b 3 6 9 12 15 8.67 9.34 MIN: 7.68 / MAX: 9.4 MIN: 8.61 / MAX: 9.98
PyTorch Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l a b 3 6 9 12 15 9.33 9.55 MIN: 8.18 / MAX: 9.65 MIN: 8.99 / MAX: 9.9
PyTorch Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l a b 2 4 6 8 10 6.22 6.34 MIN: 5.81 / MAX: 6.46 MIN: 6.05 / MAX: 6.53
PyTorch Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l a b 2 4 6 8 10 6.22 6.18 MIN: 5.89 / MAX: 6.48 MIN: 5.92 / MAX: 6.42
PyTorch Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l a b 2 4 6 8 10 6.22 5.90 MIN: 5.84 / MAX: 6.49 MIN: 5.51 / MAX: 6.32
TensorFlow Device: CPU - Batch Size: 1 - Model: AlexNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 1 - Model: AlexNet a b 1.062 2.124 3.186 4.248 5.31 4.61 4.72
TensorFlow Device: CPU - Batch Size: 16 - Model: AlexNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: AlexNet a b 10 20 30 40 50 41.54 42.63
TensorFlow Device: CPU - Batch Size: 32 - Model: AlexNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 32 - Model: AlexNet a b 13 26 39 52 65 57.09 58.04
TensorFlow Device: CPU - Batch Size: 64 - Model: AlexNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 64 - Model: AlexNet a b 16 32 48 64 80 69.68 70.84
TensorFlow Device: CPU - Batch Size: 1 - Model: GoogLeNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 1 - Model: GoogLeNet a b 3 6 9 12 15 13.04 13.20
TensorFlow Device: CPU - Batch Size: 1 - Model: ResNet-50 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 1 - Model: ResNet-50 a b 1.233 2.466 3.699 4.932 6.165 5.33 5.48
TensorFlow Device: CPU - Batch Size: 16 - Model: GoogLeNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: GoogLeNet a b 5 10 15 20 25 21.87 22.10
TensorFlow Device: CPU - Batch Size: 16 - Model: ResNet-50 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: ResNet-50 a b 2 4 6 8 10 7.85 7.87
TensorFlow Device: CPU - Batch Size: 32 - Model: GoogLeNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 32 - Model: GoogLeNet a b 5 10 15 20 25 21.78 21.90
TensorFlow Device: CPU - Batch Size: 32 - Model: ResNet-50 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 32 - Model: ResNet-50 a b 2 4 6 8 10 7.72 7.80
TensorFlow Device: CPU - Batch Size: 64 - Model: GoogLeNet OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 64 - Model: GoogLeNet a b 5 10 15 20 25 21.68 21.83
TensorFlow Device: CPU - Batch Size: 64 - Model: ResNet-50 OpenBenchmarking.org images/sec, More Is Better TensorFlow 2.16.1 Device: CPU - Batch Size: 64 - Model: ResNet-50 a b 2 4 6 8 10 7.69 7.84
Blender Blend File: BMW27 - Compute: CPU-Only OpenBenchmarking.org Seconds, Fewer Is Better Blender 4.1 Blend File: BMW27 - Compute: CPU-Only a b 30 60 90 120 150 152.81 154.22
Blender Blend File: Junkshop - Compute: CPU-Only OpenBenchmarking.org Seconds, Fewer Is Better Blender 4.1 Blend File: Junkshop - Compute: CPU-Only a b 50 100 150 200 250 208.77 208.69
Blender Blend File: Classroom - Compute: CPU-Only OpenBenchmarking.org Seconds, Fewer Is Better Blender 4.1 Blend File: Classroom - Compute: CPU-Only a b 90 180 270 360 450 395.99 397.59
Blender Blend File: Fishy Cat - Compute: CPU-Only OpenBenchmarking.org Seconds, Fewer Is Better Blender 4.1 Blend File: Fishy Cat - Compute: CPU-Only a b 40 80 120 160 200 186.33 185.76
Blender Blend File: Barbershop - Compute: CPU-Only OpenBenchmarking.org Seconds, Fewer Is Better Blender 4.1 Blend File: Barbershop - Compute: CPU-Only a b 300 600 900 1200 1500 1474.59 1490.95
Blender Blend File: Pabellon Barcelona - Compute: CPU-Only OpenBenchmarking.org Seconds, Fewer Is Better Blender 4.1 Blend File: Pabellon Barcelona - Compute: CPU-Only a b 100 200 300 400 500 481.62 482.13
BRL-CAD VGR Performance Metric OpenBenchmarking.org VGR Performance Metric, More Is Better BRL-CAD 7.38.2 VGR Performance Metric a b 30K 60K 90K 120K 150K 155860 155503 1. (CXX) g++ options: -std=c++17 -pipe -fvisibility=hidden -fno-strict-aliasing -fno-common -fexceptions -ftemplate-depth-128 -m64 -ggdb3 -O3 -fipa-pta -fstrength-reduce -finline-functions -flto -ltcl8.6 -lnetpbm -lregex_brl -lz_brl -lassimp -ldl -lm -ltk8.6
Phoronix Test Suite v10.8.5