icelake march

Tests for a future article. Intel Core i7-1065G7 testing with a Dell 06CDVY (1.0.9 BIOS) and Intel Iris Plus ICL GT2 16GB on Ubuntu 23.10 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2403278-NE-ICELAKEMA14&grs&sor.

icelake marchProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLCompilerFile-SystemScreen ResolutionabIntel Core i7-1065G7 @ 3.90GHz (4 Cores / 8 Threads)Dell 06CDVY (1.0.9 BIOS)Intel Ice Lake-LP DRAM16GBToshiba KBG40ZPZ512G NVMe 512GB + 2 x 0GB MassStorageClassIntel Iris Plus ICL GT2 16GB (1100MHz)Realtek ALC289Intel Ice Lake-LP PCH CNVi WiFiUbuntu 23.106.7.0-060700rc5-generic (x86_64)GNOME Shell 45.1X Server + Wayland4.6 Mesa 24.0~git2312230600.551924~oibaf~m (git-551924a 2023-12-23 mantic-oibaf-ppa)GCC 13.2.0ext41920x1200OpenBenchmarking.orgKernel Details- Transparent Huge Pages: madviseCompiler Details- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details- Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0xc2 - Thermald 2.5.4 Python Details- Python 3.11.6Security Details- gather_data_sampling: Mitigation of Microcode + itlb_multihit: KVM: Mitigation of VMX disabled + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Mitigation of Clear buffers; SMT vulnerable + retbleed: Mitigation of Enhanced IBRS + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Mitigation of Microcode + tsx_async_abort: Not affected

icelake marchjpegxl: PNG - 80pytorch: CPU - 1 - ResNet-152pytorch: CPU - 1 - ResNet-50encode-wavpack: WAV To WavPackrocksdb: Seq Fillopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUtensorflow: CPU - 1 - ResNet-50rocksdb: Overwriteonednn: Deconvolution Batch shapes_1d - CPUv-ray: CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUjpegxl: PNG - 90tensorflow: CPU - 16 - GoogLeNetsvt-av1: Preset 8 - Bosphorus 1080popenvino: Face Detection Retail FP16 - CPUrocksdb: Read While Writingrocksdb: Rand Readopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUjpegxl: JPEG - 90jpegxl: JPEG - 80onednn: Convolution Batch Shapes Auto - CPUtensorflow: CPU - 32 - AlexNetopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUtensorflow: CPU - 64 - AlexNettensorflow: CPU - 32 - GoogLeNettensorflow: CPU - 16 - ResNet-50rocksdb: Update Randopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Person Re-Identification Retail FP16 - CPUpytorch: CPU - 1 - Efficientnet_v2_lopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUstockfish: Chess Benchmarkopenvino: Handwritten English Recognition FP16 - CPUonednn: Recurrent Neural Network Training - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Noise Suppression Poconet-Like FP16 - CPUtensorflow: CPU - 64 - GoogLeNetopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Noise Suppression Poconet-Like FP16 - CPUtensorflow: CPU - 64 - ResNet-50blender: BMW27 - CPU-Onlytensorflow: CPU - 16 - AlexNettensorflow: CPU - 32 - ResNet-50jpegxl: PNG - 100jpegxl-decode: Allblender: Pabellon Barcelona - CPU-Onlypytorch: CPU - 32 - ResNet-152rocksdb: Rand Fillpytorch: CPU - 16 - Efficientnet_v2_lopenvino: Person Detection FP32 - CPUblender: Fishy Cat - CPU-Onlyopenvino: Person Detection FP32 - CPUpytorch: CPU - 64 - ResNet-152jpegxl: JPEG - 100tensorflow: CPU - 1 - GoogLeNetopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUprimesieve: 1e12svt-av1: Preset 4 - Bosphorus 1080ppytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lopenvino: Face Detection FP16-INT8 - CPUpytorch: CPU - 16 - ResNet-152svt-av1: Preset 13 - Bosphorus 4Kopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUonednn: IP Shapes 1D - CPUrocksdb: Read Rand Write Randopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUblender: Junkshop - CPU-Onlypytorch: CPU - 16 - ResNet-50tensorflow: CPU - 1 - AlexNetsvt-av1: Preset 4 - Bosphorus 4Kpytorch: CPU - 64 - ResNet-50rocksdb: Rand Fill Synccompress-pbzip2: FreeBSD-13.0-RELEASE-amd64-memstick.img Compressiondraco: Lionsvt-av1: Preset 12 - Bosphorus 4Konednn: Recurrent Neural Network Inference - CPUjpegxl-decode: 1svt-av1: Preset 13 - Bosphorus 1080pdraco: Church Facadeonednn: IP Shapes 3D - CPUsvt-av1: Preset 12 - Bosphorus 1080pbuild-mesa: Time To Compileonednn: Deconvolution Batch shapes_3d - CPUsvt-av1: Preset 8 - Bosphorus 4Kbuild-linux-kernel: defconfigpytorch: CPU - 32 - ResNet-50ab8.2788.4520.9917.65781333547.3684.345.3548711618.832353543.990.927.26548.8536.88108.377.54319.6928.8523.865002109192128167.0310.38383.05460.938.667.6628.04813.710642.9316.82236.7145.5920.097.2818633498.2540.644.434463.622762544123.0712553.332.471779.080.636365.092.263.7734.2620.370.8662.62116.527.5671.939.047.442.997123.5122207.353.375054332.467.1848.45562.293.392.98122.1777.4751.5988.5923.6432.472.482.373.4525.118132.930.021675.087.0803750409126.34151.61921.098.9211.230.9288.54171928.581235555924.9026399.7357.584240.4684215.80745184.734143.67413.45447.551496.168.6911.0536.4816.7214.43294071154.5373.266.0354116116.9829389939.9799.857.94502.5540.2399.378.22221.4431.37322.0154215399615271819.59414.42426.39.368.2568.66212.75546.115.67253.9748.8621.527.79199263105.0338.024.734765.042945032115.511783.634.591894.370.675987.532.0767.7632.2621.630.8158.98123.677.96633.7241.387.873.169130.4432092.753.555321972.597.47806.43535.13.563.1323.2673.9154.0684.5833.8062.582.592.473.5926.134138.1128.891614.496.8263952214527.27146.48892.478.6611.560.9528.74168328.096278549124.6246341.958.041238.62683615.83135184.085143.24913.48857.569497.1818.68OpenBenchmarking.org

JPEG-XL libjxl

Input: PNG - Quality: 80

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: PNG - Quality: 80ba369121511.0538.2781. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-152ab2468108.456.48MIN: 7.21 / MAX: 8.75MIN: 5.29 / MAX: 8.11

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-50ab51015202520.9916.72MIN: 18.42 / MAX: 21.52MIN: 14.31 / MAX: 22.33

WavPack Audio Encoding

WAV To WavPack

OpenBenchmarking.orgSeconds, Fewer Is BetterWavPack Audio Encoding 5.7WAV To WavPackba4812162014.4317.66

RocksDB

Test: Sequential Fill

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Sequential Fillba200K400K600K800K1000K9407118133351. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenVINO

Model: Road Segmentation ADAS FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUba122436486054.5347.361. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Road Segmentation ADAS FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUba2040608010073.2684.34MIN: 42.21 / MAX: 97.49MIN: 42.98 / MAX: 112.291. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

TensorFlow

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: ResNet-50ba2468106.035.35

RocksDB

Test: Overwrite

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Overwriteba120K240K360K480K600K5411614871161. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

oneDNN

Harness: Deconvolution Batch shapes_1d - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_1d - Engine: CPUba51015202516.9818.83MIN: 15.81MIN: 16.91. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Chaos Group V-RAY

Mode: CPU

OpenBenchmarking.orgvsamples, More Is BetterChaos Group V-RAY 6.0Mode: CPUba800160024003200400038993535

OpenVINO

Model: Person Vehicle Bike Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUba102030405039.9743.90MIN: 22.42 / MAX: 60.47MIN: 22.03 / MAX: 69.031. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Vehicle Bike Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUba2040608010099.8590.921. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUba2468107.947.261. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUba120240360480600502.55548.85MIN: 251.66 / MAX: 603.5MIN: 316.87 / MAX: 622.991. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Handwritten English Recognition FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUba91827364540.2336.881. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Handwritten English Recognition FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUba2040608010099.37108.37MIN: 52.55 / MAX: 136.55MIN: 51.18 / MAX: 147.771. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

JPEG-XL libjxl

Input: PNG - Quality: 90

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: PNG - Quality: 90ba2468108.2227.5431. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

TensorFlow

Device: CPU - Batch Size: 16 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: GoogLeNetba51015202521.4419.69

SVT-AV1

Encoder Mode: Preset 8 - Input: Bosphorus 1080p

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 8 - Input: Bosphorus 1080pba71421283531.3728.851. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenVINO

Model: Face Detection Retail FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUba61218243022.0123.86MIN: 8.86 / MAX: 45.48MIN: 9.57 / MAX: 41.511. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

RocksDB

Test: Read While Writing

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Read While Writingba120K240K360K480K600K5421535002101. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

RocksDB

Test: Random Read

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Random Readba2M4M6M8M10M996152791921281. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenVINO

Model: Face Detection Retail FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUba4080120160200181.00167.031. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUba36912159.5910.38MIN: 4.46 / MAX: 25.46MIN: 4.12 / MAX: 24.581. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUba90180270360450414.42383.051. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Machine Translation EN To DE FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUba100200300400500426.30460.93MIN: 266.17 / MAX: 497.45MIN: 257.76 / MAX: 516.231. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Machine Translation EN To DE FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUba36912159.368.661. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

JPEG-XL libjxl

Input: JPEG - Quality: 90

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: JPEG - Quality: 90ba2468108.2567.6621. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

JPEG-XL libjxl

Input: JPEG - Quality: 80

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: JPEG - Quality: 80ba2468108.6628.0481. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

oneDNN

Harness: Convolution Batch Shapes Auto - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Convolution Batch Shapes Auto - Engine: CPUba4812162012.7613.71MIN: 12.13MIN: 11.941. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

TensorFlow

Device: CPU - Batch Size: 32 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: AlexNetba102030405046.1042.93

OpenVINO

Model: Weld Porosity Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUba4812162015.6716.82MIN: 7.56 / MAX: 33.57MIN: 6.35 / MAX: 33.71. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUba60120180240300253.97236.711. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

TensorFlow

Device: CPU - Batch Size: 64 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: AlexNetba112233445548.8645.59

TensorFlow

Device: CPU - Batch Size: 32 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: GoogLeNetba51015202521.5220.09

TensorFlow

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: ResNet-50ba2468107.797.28

RocksDB

Test: Update Random

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Update Randomba40K80K120K160K200K1992631863341. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenVINO

Model: Person Re-Identification Retail FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUba20406080100105.0398.251. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Re-Identification Retail FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUba91827364538.0240.64MIN: 18.33 / MAX: 61.62MIN: 16.78 / MAX: 58.651. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

PyTorch

Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_lba1.06432.12863.19294.25725.32154.734.43MIN: 4.29 / MAX: 6.39MIN: 3.92 / MAX: 6.05

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUba100020003000400050004765.044463.621. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Stockfish

Chess Benchmark

OpenBenchmarking.orgNodes Per Second, More Is BetterStockfish 16.1Chess Benchmarkba600K1200K1800K2400K3000K294503227625441. (CXX) g++ options: -lgcov -m64 -lpthread -fno-exceptions -std=c++17 -fno-peel-loops -fno-tracer -pedantic -O3 -funroll-loops -msse -msse3 -mpopcnt -mavx2 -mbmi -mavx512f -mavx512bw -mavx512vnni -mavx512dq -mavx512vl -msse4.1 -mssse3 -msse2 -mbmi2 -flto -flto-partition=one -flto=jobserver

OpenVINO

Model: Handwritten English Recognition FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUba306090120150115.50123.07MIN: 62.34 / MAX: 153.58MIN: 62.42 / MAX: 153.741. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

oneDNN

Harness: Recurrent Neural Network Training - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Training - Engine: CPUba3K6K9K12K15K11783.612553.3MIN: 11523.5MIN: 12419.51. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

Model: Handwritten English Recognition FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUba81624324034.5932.471. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUba4008001200160020001894.371779.081. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUba0.15080.30160.45240.60320.7540.670.631. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUba140028004200560070005987.536365.09MIN: 3948.27 / MAX: 6469.32MIN: 4117.28 / MAX: 6821.881. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUba0.4950.991.4851.982.4752.072.20MIN: 0.81 / MAX: 21.75MIN: 0.81 / MAX: 10.391. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUba153045607567.7663.771. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Noise Suppression Poconet-Like FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUba81624324032.2634.26MIN: 17.41 / MAX: 59.91MIN: 16.36 / MAX: 51.611. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

TensorFlow

Device: CPU - Batch Size: 64 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: GoogLeNetba51015202521.6320.37

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUba0.19350.3870.58050.7740.96750.810.86MIN: 0.31 / MAX: 7.17MIN: 0.32 / MAX: 7.111. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUba142842567058.9862.62MIN: 30.6 / MAX: 85.41MIN: 28.99 / MAX: 93.011. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Noise Suppression Poconet-Like FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUba306090120150123.67116.521. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

TensorFlow

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: ResNet-50ba2468107.967.50

Blender

Blend File: BMW27 - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: BMW27 - Compute: CPU-Onlyba140280420560700633.72671.90

TensorFlow

Device: CPU - Batch Size: 16 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: AlexNetba91827364541.3839.04

TensorFlow

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: ResNet-50ba2468107.877.44

JPEG-XL libjxl

Input: PNG - Quality: 100

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: PNG - Quality: 100ba0.7131.4262.1392.8523.5653.1692.9971. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

JPEG-XL Decoding libjxl

CPU Threads: All

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL Decoding libjxl 0.10.1CPU Threads: Allba306090120150130.44123.51

Blender

Blend File: Pabellon Barcelona - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Pabellon Barcelona - Compute: CPU-Onlyba50010001500200025002092.752207.35

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-152ba0.79881.59762.39643.19523.9943.553.37MIN: 3.29 / MAX: 4.15MIN: 3.09 / MAX: 4.17

RocksDB

Test: Random Fill

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Random Fillba110K220K330K440K550K5321975054331. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

PyTorch

Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lba0.58281.16561.74842.33122.9142.592.46MIN: 2.34 / MAX: 3.21MIN: 2.18 / MAX: 3.06

OpenVINO

Model: Person Detection FP32 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUba2468107.477.101. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Blender

Blend File: Fishy Cat - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Fishy Cat - Compute: CPU-Onlyba2004006008001000806.43848.45

OpenVINO

Model: Person Detection FP32 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUba120240360480600535.10562.29MIN: 331.64 / MAX: 616.9MIN: 328.73 / MAX: 643.551. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-152ba0.8011.6022.4033.2044.0053.563.39MIN: 3.3 / MAX: 4.19MIN: 3.22 / MAX: 4.18

JPEG-XL libjxl

Input: JPEG - Quality: 100

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: JPEG - Quality: 100ba0.70431.40862.11292.81723.52153.1302.9811. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

TensorFlow

Device: CPU - Batch Size: 1 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: GoogLeNetba61218243023.2622.17

OpenVINO

Model: Vehicle Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUba2040608010073.9177.47MIN: 42.25 / MAX: 102.91MIN: 41.16 / MAX: 110.741. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Vehicle Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUba122436486054.0651.591. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Primesieve

Length: 1e12

OpenBenchmarking.orgSeconds, Fewer Is BetterPrimesieve 12.1Length: 1e12ba2040608010084.5888.591. (CXX) g++ options: -O3

SVT-AV1

Encoder Mode: Preset 4 - Input: Bosphorus 1080p

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 4 - Input: Bosphorus 1080pba0.85641.71282.56923.42564.2823.8063.6431. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

PyTorch

Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_lba0.58051.1611.74152.3222.90252.582.47MIN: 2.18 / MAX: 3.27MIN: 2.3 / MAX: 3.1

PyTorch

Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_lba0.58281.16561.74842.33122.9142.592.48MIN: 2.29 / MAX: 3.06MIN: 2.21 / MAX: 3.02

OpenVINO

Model: Face Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUba0.55581.11161.66742.22322.7792.472.371. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-152ba0.80781.61562.42343.23124.0393.593.45MIN: 3.18 / MAX: 4.56MIN: 3.28 / MAX: 4.26

SVT-AV1

Encoder Mode: Preset 13 - Input: Bosphorus 4K

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 13 - Input: Bosphorus 4Kba61218243026.1325.121. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

OpenVINO

Model: Vehicle Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUba306090120150138.11132.901. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Vehicle Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUba71421283528.8930.02MIN: 12.22 / MAX: 56.17MIN: 12.02 / MAX: 53.721. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUba4008001200160020001614.491675.08MIN: 989.41 / MAX: 1851.51MIN: 979.3 / MAX: 1858.761. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

oneDNN

Harness: IP Shapes 1D - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 1D - Engine: CPUba2468106.826397.08037MIN: 6.61MIN: 6.621. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

RocksDB

Test: Read Random Write Random

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Read Random Write Randomba110K220K330K440K550K5221455040911. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

OpenVINO

Model: Road Segmentation ADAS FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUba61218243027.2726.341. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Road Segmentation ADAS FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUba306090120150146.48151.61MIN: 95.3 / MAX: 181.77MIN: 96.87 / MAX: 185.091. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

Blender

Blend File: Junkshop - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Junkshop - Compute: CPU-Onlyba2004006008001000892.47921.09

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-50ab2468108.928.66MIN: 6.82 / MAX: 10.81MIN: 7.84 / MAX: 10.76

TensorFlow

Device: CPU - Batch Size: 1 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: AlexNetba369121511.5611.23

SVT-AV1

Encoder Mode: Preset 4 - Input: Bosphorus 4K

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 4 - Input: Bosphorus 4Kba0.21420.42840.64260.85681.0710.9520.9281. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-50ba2468108.748.54MIN: 7.76 / MAX: 10.2MIN: 7.7 / MAX: 10.85

RocksDB

Test: Random Fill Sync

OpenBenchmarking.orgOp/s, More Is BetterRocksDB 9.0Test: Random Fill Syncab400800120016002000171916831. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

Parallel BZIP2 Compression

FreeBSD-13.0-RELEASE-amd64-memstick.img Compression

OpenBenchmarking.orgSeconds, Fewer Is BetterParallel BZIP2 Compression 1.1.13FreeBSD-13.0-RELEASE-amd64-memstick.img Compressionba71421283528.1028.581. (CXX) g++ options: -O2 -pthread -lbz2 -lpthread

Google Draco

Model: Lion

OpenBenchmarking.orgms, Fewer Is BetterGoogle Draco 1.5.6Model: Lionba12002400360048006000549155591. (CXX) g++ options: -O3

SVT-AV1

Encoder Mode: Preset 12 - Input: Bosphorus 4K

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 12 - Input: Bosphorus 4Kab61218243024.9024.621. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

oneDNN

Harness: Recurrent Neural Network Inference - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Inference - Engine: CPUba140028004200560070006341.906399.73MIN: 6215.67MIN: 6336.721. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

JPEG-XL Decoding libjxl

CPU Threads: 1

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL Decoding libjxl 0.10.1CPU Threads: 1ba132639526558.0457.58

SVT-AV1

Encoder Mode: Preset 13 - Input: Bosphorus 1080p

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 13 - Input: Bosphorus 1080pab50100150200250240.46238.631. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Google Draco

Model: Church Facade

OpenBenchmarking.orgms, Fewer Is BetterGoogle Draco 1.5.6Model: Church Facadeba2K4K6K8K10K836184211. (CXX) g++ options: -O3

oneDNN

Harness: IP Shapes 3D - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 3D - Engine: CPUab1.31212.62423.93635.24846.56055.807455.83135MIN: 5.67MIN: 5.681. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

SVT-AV1

Encoder Mode: Preset 12 - Input: Bosphorus 1080p

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 12 - Input: Bosphorus 1080pab4080120160200184.73184.091. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Timed Mesa Compilation

Time To Compile

OpenBenchmarking.orgSeconds, Fewer Is BetterTimed Mesa Compilation 24.0Time To Compileba306090120150143.25143.67

oneDNN

Harness: Deconvolution Batch shapes_3d - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_3d - Engine: CPUab369121513.4513.49MIN: 13.22MIN: 13.241. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

SVT-AV1

Encoder Mode: Preset 8 - Input: Bosphorus 4K

OpenBenchmarking.orgFrames Per Second, More Is BetterSVT-AV1 2.0Encoder Mode: Preset 8 - Input: Bosphorus 4Kba2468107.5697.5511. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq

Timed Linux Kernel Compilation

Build: defconfig

OpenBenchmarking.orgSeconds, Fewer Is BetterTimed Linux Kernel Compilation 6.8Build: defconfigab110220330440550496.16497.18

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-50ab2468108.698.68MIN: 7.73 / MAX: 9.58MIN: 7.82 / MAX: 10.13


Phoronix Test Suite v10.8.5