tests

AMD Ryzen 5 5500U testing with a NB01 TUXEDO Aura 15 Gen2 NL5xNU (1.07.11RTR1 BIOS) and AMD Lucienne 512MB on Tuxedo 22.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2403275-NE-TESTS110635
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results

Limit displaying results to tests within:

CPU Massive 2 Tests
HPC - High Performance Computing 2 Tests
Machine Learning 2 Tests
Multi-Core 2 Tests
Python Tests 3 Tests

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Geometric Means Per-Suite/Category
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Hide
Result
Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
a
March 26
  5 Hours, 17 Minutes
b
March 26
  5 Hours, 11 Minutes
Invert Hiding All Results Option
  5 Hours, 14 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


tests - Phoronix Test Suite

tests

AMD Ryzen 5 5500U testing with a NB01 TUXEDO Aura 15 Gen2 NL5xNU (1.07.11RTR1 BIOS) and AMD Lucienne 512MB on Tuxedo 22.04 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2403275-NE-TESTS110635&grt&rdt.

testsProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionabAMD Ryzen 5 5500U @ 4.06GHz (6 Cores / 12 Threads)NB01 TUXEDO Aura 15 Gen2 NL5xNU (1.07.11RTR1 BIOS)AMD Renoir/Cezanne2 x 8GB DDR4-3200MT/s Samsung M471A1K43DB1-CWESamsung SSD 970 EVO Plus 500GBAMD Lucienne 512MB (1800/1333MHz)AMD Renoir Radeon HD AudioRealtek RTL8111/8168/8211/8411 + Intel Wi-Fi 6 AX200Tuxedo 22.046.5.0-10027-tuxedo (x86_64)KDE Plasma 5.27.10X Server 1.21.1.44.6 Mesa 24.0.3-0tux2 (LLVM 15.0.7 DRM 3.54)1.3.274GCC 11.4.0ext41920x1080OpenBenchmarking.orgKernel Details- Transparent Huge Pages: madviseCompiler Details- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details- Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0x8608103 Python Details- Python 3.10.12Security Details- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

testsblender: BMW27 - CPU-Onlyblender: Classroom - CPU-Onlyblender: Fishy Cat - CPU-Onlyblender: Barbershop - CPU-Onlyblender: Pabellon Barcelona - CPU-Onlypytorch: CPU - 1 - ResNet-50pytorch: CPU - 1 - ResNet-152pytorch: CPU - 16 - ResNet-50pytorch: CPU - 32 - ResNet-50pytorch: CPU - 64 - ResNet-50pytorch: CPU - 16 - ResNet-152pytorch: CPU - 256 - ResNet-50pytorch: CPU - 32 - ResNet-152pytorch: CPU - 512 - ResNet-50pytorch: CPU - 64 - ResNet-152pytorch: CPU - 256 - ResNet-152pytorch: CPU - 512 - ResNet-152pytorch: CPU - 1 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_lpytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lpytorch: CPU - 256 - Efficientnet_v2_lpytorch: CPU - 512 - Efficientnet_v2_ltensorflow: CPU - 1 - VGG-16tensorflow: CPU - 1 - AlexNettensorflow: CPU - 16 - VGG-16tensorflow: CPU - 32 - VGG-16tensorflow: CPU - 16 - AlexNettensorflow: CPU - 32 - AlexNettensorflow: CPU - 64 - AlexNettensorflow: CPU - 1 - GoogLeNettensorflow: CPU - 1 - ResNet-50tensorflow: CPU - 256 - AlexNettensorflow: CPU - 512 - AlexNettensorflow: CPU - 16 - GoogLeNettensorflow: CPU - 16 - ResNet-50tensorflow: CPU - 32 - GoogLeNettensorflow: CPU - 32 - ResNet-50tensorflow: CPU - 64 - GoogLeNettensorflow: CPU - 64 - ResNet-50tensorflow: CPU - 256 - GoogLeNetbuild-mesa: Time To Compileab321.21841.77385.473327.011067.4621.009.3513.0312.8412.915.6712.845.5512.685.465.255.235.163.433.403.423.333.431.395.153.23.2736.3945.5551.5310.844.5656.557.3919.856.4120.126.4119.736.4119.4858.728319.31827.48372.083128.57994.1921.319.1513.1913.0112.755.5012.905.4912.215.515.505.605.553.653.603.623.583.601.385.13.093.0536.0244.9651.2510.834.5456.5557.520.196.520.526.4219.86.3219.5362.049OpenBenchmarking.org

Blender

Blend File: BMW27 - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: BMW27 - Compute: CPU-Onlyab70140210280350321.21319.31

Blender

Blend File: Classroom - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Classroom - Compute: CPU-Onlyab2004006008001000841.77827.48

Blender

Blend File: Fishy Cat - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Fishy Cat - Compute: CPU-Onlyab80160240320400385.47372.08

Blender

Blend File: Barbershop - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Barbershop - Compute: CPU-Onlyab70014002100280035003327.013128.57

Blender

Blend File: Pabellon Barcelona - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Pabellon Barcelona - Compute: CPU-Onlyab20040060080010001067.46994.19

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-50ab51015202521.0021.31MIN: 18.97 / MAX: 22.06MIN: 19.02 / MAX: 22.37

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-152ab36912159.359.15MIN: 8.95 / MAX: 9.56MIN: 7.71 / MAX: 9.45

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-50ab369121513.0313.19MIN: 10.67 / MAX: 13.24MIN: 12.63 / MAX: 13.62

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-50ab369121512.8413.01MIN: 11.98 / MAX: 13.14MIN: 10.31 / MAX: 13.63

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-50ab369121512.9112.75MIN: 12.22 / MAX: 13.13MIN: 11.96 / MAX: 13.06

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-152ab1.27582.55163.82745.10326.3795.675.50MIN: 4.92 / MAX: 5.85MIN: 4.52 / MAX: 5.67

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-50ab369121512.8412.90MIN: 11.4 / MAX: 13.12MIN: 11.21 / MAX: 13.23

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-152ab1.24882.49763.74644.99526.2445.555.49MIN: 5.27 / MAX: 5.69MIN: 4.9 / MAX: 5.65

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-50ab369121512.6812.21MIN: 11.1 / MAX: 13.05MIN: 11.73 / MAX: 12.93

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-152ab1.23982.47963.71944.95926.1995.465.51MIN: 5.13 / MAX: 5.76MIN: 4.73 / MAX: 5.69

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-152ab1.23752.4753.71254.956.18755.255.50MIN: 4.56 / MAX: 5.61MIN: 5.23 / MAX: 5.75

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-152ab1.262.523.785.046.35.235.60MIN: 4.63 / MAX: 5.55MIN: 4.7 / MAX: 5.82

PyTorch

Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_lab1.24882.49763.74644.99526.2445.165.55MIN: 4.63 / MAX: 5.38MIN: 5.16 / MAX: 5.76

PyTorch

Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lab0.82131.64262.46393.28524.10653.433.65MIN: 3.22 / MAX: 3.62MIN: 3.29 / MAX: 3.78

PyTorch

Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_lab0.811.622.433.244.053.403.60MIN: 3.17 / MAX: 3.52MIN: 3.43 / MAX: 3.75

PyTorch

Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_lab0.81451.6292.44353.2584.07253.423.62MIN: 3.31 / MAX: 3.62MIN: 3.48 / MAX: 3.74

PyTorch

Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_lab0.80551.6112.41653.2224.02753.333.58MIN: 3.07 / MAX: 3.54MIN: 3.45 / MAX: 3.76

PyTorch

Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_lab0.811.622.433.244.053.433.60MIN: 3.08 / MAX: 3.65MIN: 3.45 / MAX: 3.74

TensorFlow

Device: CPU - Batch Size: 1 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: VGG-16ab0.31280.62560.93841.25121.5641.391.38

TensorFlow

Device: CPU - Batch Size: 1 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: AlexNetab1.15882.31763.47644.63525.7945.155.10

TensorFlow

Device: CPU - Batch Size: 16 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: VGG-16ab0.721.442.162.883.63.203.09

TensorFlow

Device: CPU - Batch Size: 32 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: VGG-16ab0.73581.47162.20742.94323.6793.273.05

TensorFlow

Device: CPU - Batch Size: 16 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: AlexNetab81624324036.3936.02

TensorFlow

Device: CPU - Batch Size: 32 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: AlexNetab102030405045.5544.96

TensorFlow

Device: CPU - Batch Size: 64 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: AlexNetab122436486051.5351.25

TensorFlow

Device: CPU - Batch Size: 1 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: GoogLeNetab369121510.8410.83

TensorFlow

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: ResNet-50ab1.0262.0523.0784.1045.134.564.54

TensorFlow

Device: CPU - Batch Size: 256 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: AlexNetab132639526556.5056.55

TensorFlow

Device: CPU - Batch Size: 512 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 512 - Model: AlexNetab132639526557.3957.50

TensorFlow

Device: CPU - Batch Size: 16 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: GoogLeNetab51015202519.8520.19

TensorFlow

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: ResNet-50ab2468106.416.50

TensorFlow

Device: CPU - Batch Size: 32 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: GoogLeNetab51015202520.1220.52

TensorFlow

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: ResNet-50ab2468106.416.42

TensorFlow

Device: CPU - Batch Size: 64 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: GoogLeNetab51015202519.7319.80

TensorFlow

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: ResNet-50ab2468106.416.32

TensorFlow

Device: CPU - Batch Size: 256 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: GoogLeNetab51015202519.4819.53

Timed Mesa Compilation

Time To Compile

OpenBenchmarking.orgSeconds, Fewer Is BetterTimed Mesa Compilation 24.0Time To Compileab142842567058.7362.05


Phoronix Test Suite v10.8.4