tests

Tests for a future article. AMD Ryzen 5 5500U testing with a NB01 TUXEDO Aura 15 Gen2 NL5xNU (1.07.11RTR1 BIOS) and AMD Lucienne 512MB on Tuxedo 22.04 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2403274-NE-TESTS040635&grr.

testsProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionabAMD Ryzen 5 5500U @ 4.06GHz (6 Cores / 12 Threads)NB01 TUXEDO Aura 15 Gen2 NL5xNU (1.07.11RTR1 BIOS)AMD Renoir/Cezanne2 x 8GB DDR4-3200MT/s Samsung M471A1K43DB1-CWESamsung SSD 970 EVO Plus 500GBAMD Lucienne 512MB (1800/1333MHz)AMD Renoir Radeon HD AudioRealtek RTL8111/8168/8211/8411 + Intel Wi-Fi 6 AX200Tuxedo 22.046.5.0-10027-tuxedo (x86_64)KDE Plasma 5.27.10X Server 1.21.1.44.6 Mesa 24.0.3-0tux2 (LLVM 15.0.7 DRM 3.54)1.3.274GCC 11.4.0ext41920x1080OpenBenchmarking.orgKernel Details- Transparent Huge Pages: madviseCompiler Details- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details- Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0x8608103 Python Details- Python 3.10.12Security Details- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

testsblender: Barbershop - CPU-Onlytensorflow: CPU - 256 - GoogLeNettensorflow: CPU - 32 - VGG-16tensorflow: CPU - 64 - ResNet-50blender: Pabellon Barcelona - CPU-Onlytensorflow: CPU - 512 - AlexNetblender: Classroom - CPU-Onlytensorflow: CPU - 16 - VGG-16tensorflow: CPU - 32 - ResNet-50pytorch: CPU - 256 - Efficientnet_v2_lpytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lpytorch: CPU - 512 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_ltensorflow: CPU - 256 - AlexNetblender: Fishy Cat - CPU-Onlytensorflow: CPU - 64 - GoogLeNetpytorch: CPU - 256 - ResNet-152pytorch: CPU - 512 - ResNet-152pytorch: CPU - 32 - ResNet-152pytorch: CPU - 64 - ResNet-152pytorch: CPU - 16 - ResNet-152blender: BMW27 - CPU-Onlytensorflow: CPU - 16 - ResNet-50pytorch: CPU - 1 - Efficientnet_v2_ltensorflow: CPU - 32 - GoogLeNetpytorch: CPU - 512 - ResNet-50pytorch: CPU - 64 - ResNet-50pytorch: CPU - 256 - ResNet-50pytorch: CPU - 32 - ResNet-50tensorflow: CPU - 64 - AlexNetpytorch: CPU - 16 - ResNet-50pytorch: CPU - 1 - ResNet-152tensorflow: CPU - 16 - GoogLeNettensorflow: CPU - 1 - VGG-16tensorflow: CPU - 32 - AlexNetbuild-mesa: Time To Compilepytorch: CPU - 1 - ResNet-50tensorflow: CPU - 16 - AlexNettensorflow: CPU - 1 - ResNet-50tensorflow: CPU - 1 - AlexNettensorflow: CPU - 1 - GoogLeNetab3327.0119.483.276.411067.4657.39841.773.26.413.333.403.423.433.4356.5385.4719.735.255.235.555.465.67321.216.415.1620.1212.6812.9112.8412.8451.5313.039.3519.851.3945.5558.72821.0036.394.565.1510.843128.5719.533.056.32994.1957.5827.483.096.423.583.603.623.603.6556.55372.0819.85.505.605.495.515.50319.316.55.5520.5212.2112.7512.9013.0151.2513.199.1520.191.3844.9662.04921.3136.024.545.110.83OpenBenchmarking.org

Blender

Blend File: Barbershop - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Barbershop - Compute: CPU-Onlyab70014002100280035003327.013128.57

TensorFlow

Device: CPU - Batch Size: 256 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: GoogLeNetab51015202519.4819.53

TensorFlow

Device: CPU - Batch Size: 32 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: VGG-16ab0.73581.47162.20742.94323.6793.273.05

TensorFlow

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: ResNet-50ab2468106.416.32

Blender

Blend File: Pabellon Barcelona - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Pabellon Barcelona - Compute: CPU-Onlyab20040060080010001067.46994.19

TensorFlow

Device: CPU - Batch Size: 512 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 512 - Model: AlexNetab132639526557.3957.50

Blender

Blend File: Classroom - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Classroom - Compute: CPU-Onlyab2004006008001000841.77827.48

TensorFlow

Device: CPU - Batch Size: 16 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: VGG-16ab0.721.442.162.883.63.203.09

TensorFlow

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: ResNet-50ab2468106.416.42

PyTorch

Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_lab0.80551.6112.41653.2224.02753.333.58MIN: 3.07 / MAX: 3.54MIN: 3.45 / MAX: 3.76

PyTorch

Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_lab0.811.622.433.244.053.403.60MIN: 3.17 / MAX: 3.52MIN: 3.43 / MAX: 3.75

PyTorch

Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_lab0.81451.6292.44353.2584.07253.423.62MIN: 3.31 / MAX: 3.62MIN: 3.48 / MAX: 3.74

PyTorch

Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_lab0.811.622.433.244.053.433.60MIN: 3.08 / MAX: 3.65MIN: 3.45 / MAX: 3.74

PyTorch

Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lab0.82131.64262.46393.28524.10653.433.65MIN: 3.22 / MAX: 3.62MIN: 3.29 / MAX: 3.78

TensorFlow

Device: CPU - Batch Size: 256 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: AlexNetab132639526556.5056.55

Blender

Blend File: Fishy Cat - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Fishy Cat - Compute: CPU-Onlyab80160240320400385.47372.08

TensorFlow

Device: CPU - Batch Size: 64 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: GoogLeNetab51015202519.7319.80

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-152ab1.23752.4753.71254.956.18755.255.50MIN: 4.56 / MAX: 5.61MIN: 5.23 / MAX: 5.75

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-152ab1.262.523.785.046.35.235.60MIN: 4.63 / MAX: 5.55MIN: 4.7 / MAX: 5.82

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-152ab1.24882.49763.74644.99526.2445.555.49MIN: 5.27 / MAX: 5.69MIN: 4.9 / MAX: 5.65

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-152ab1.23982.47963.71944.95926.1995.465.51MIN: 5.13 / MAX: 5.76MIN: 4.73 / MAX: 5.69

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-152ab1.27582.55163.82745.10326.3795.675.50MIN: 4.92 / MAX: 5.85MIN: 4.52 / MAX: 5.67

Blender

Blend File: BMW27 - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: BMW27 - Compute: CPU-Onlyab70140210280350321.21319.31

TensorFlow

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: ResNet-50ab2468106.416.50

PyTorch

Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_lab1.24882.49763.74644.99526.2445.165.55MIN: 4.63 / MAX: 5.38MIN: 5.16 / MAX: 5.76

TensorFlow

Device: CPU - Batch Size: 32 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: GoogLeNetab51015202520.1220.52

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-50ab369121512.6812.21MIN: 11.1 / MAX: 13.05MIN: 11.73 / MAX: 12.93

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-50ab369121512.9112.75MIN: 12.22 / MAX: 13.13MIN: 11.96 / MAX: 13.06

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-50ab369121512.8412.90MIN: 11.4 / MAX: 13.12MIN: 11.21 / MAX: 13.23

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-50ab369121512.8413.01MIN: 11.98 / MAX: 13.14MIN: 10.31 / MAX: 13.63

TensorFlow

Device: CPU - Batch Size: 64 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: AlexNetab122436486051.5351.25

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-50ab369121513.0313.19MIN: 10.67 / MAX: 13.24MIN: 12.63 / MAX: 13.62

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-152ab36912159.359.15MIN: 8.95 / MAX: 9.56MIN: 7.71 / MAX: 9.45

TensorFlow

Device: CPU - Batch Size: 16 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: GoogLeNetab51015202519.8520.19

TensorFlow

Device: CPU - Batch Size: 1 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: VGG-16ab0.31280.62560.93841.25121.5641.391.38

TensorFlow

Device: CPU - Batch Size: 32 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: AlexNetab102030405045.5544.96

Timed Mesa Compilation

Time To Compile

OpenBenchmarking.orgSeconds, Fewer Is BetterTimed Mesa Compilation 24.0Time To Compileab142842567058.7362.05

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-50ab51015202521.0021.31MIN: 18.97 / MAX: 22.06MIN: 19.02 / MAX: 22.37

TensorFlow

Device: CPU - Batch Size: 16 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: AlexNetab81624324036.3936.02

TensorFlow

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: ResNet-50ab1.0262.0523.0784.1045.134.564.54

TensorFlow

Device: CPU - Batch Size: 1 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: AlexNetab1.15882.31763.47644.63525.7945.155.10

TensorFlow

Device: CPU - Batch Size: 1 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: GoogLeNetab369121510.8410.83


Phoronix Test Suite v10.8.5