epyc siena

Tests for a future article. AMD EPYC 8534P 64-Core testing with a AMD Cinnabar (RCB1009C BIOS) and ASPEED on Ubuntu 23.10 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2403268-NE-EPYCSIENA58&sor&grr.

epyc sienaProcessorMotherboardChipsetMemoryDiskGraphicsNetworkOSKernelDesktopDisplay ServerCompilerFile-SystemScreen ResolutionabAMD EPYC 8534P 64-Core @ 2.30GHz (64 Cores / 128 Threads)AMD Cinnabar (RCB1009C BIOS)AMD Device 14a46 x 32GB DRAM-4800MT/s Samsung M321R4GA0BB0-CQKMG3201GB Micron_7450_MTFDKCB3T2TFS + 2000GB Corsair MP700ASPEED2 x Broadcom NetXtreme BCM5720 PCIeUbuntu 23.106.8.1-060801-generic (x86_64)GNOME Shell 45.2X Server 1.21.1.7GCC 13.2.0ext41920x1200OpenBenchmarking.orgKernel Details- Transparent Huge Pages: madviseProcessor Details- Scaling Governor: acpi-cpufreq performance (Boost: Enabled) - CPU Microcode: 0xaa00212 Python Details- Python 3.11.6Security Details- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

epyc sienatensorflow: CPU - 256 - VGG-16tensorflow: CPU - 512 - ResNet-50tensorflow: CPU - 64 - VGG-16tensorflow: CPU - 256 - ResNet-50blender: Barbershop - CPU-Onlytensorflow: CPU - 512 - GoogLeNettensorflow: CPU - 32 - VGG-16tensorflow: CPU - 16 - VGG-16tensorflow: CPU - 256 - GoogLeNettensorflow: CPU - 64 - ResNet-50blender: Pabellon Barcelona - CPU-Onlyblender: Classroom - CPU-Onlytensorflow: CPU - 512 - AlexNettensorflow: CPU - 32 - ResNet-50blender: Junkshop - CPU-Onlytensorflow: CPU - 256 - AlexNetblender: Fishy Cat - CPU-Onlytensorflow: CPU - 16 - ResNet-50tensorflow: CPU - 64 - GoogLeNetblender: BMW27 - CPU-Onlytensorflow: CPU - 1 - VGG-16tensorflow: CPU - 32 - GoogLeNettensorflow: CPU - 16 - AlexNettensorflow: CPU - 1 - ResNet-50tensorflow: CPU - 16 - GoogLeNettensorflow: CPU - 64 - AlexNettensorflow: CPU - 1 - AlexNettensorflow: CPU - 32 - AlexNettensorflow: CPU - 1 - GoogLeNetab45.78104.5344.69101.92230.13326.6342.8239.78320.3189.8481.1364.85926.4979.5434.32887.9832.9664.29285.8526.0811.40249.12349.1510.9199.74704.0334.38529.3635.2845.71104.6144.7101.73229.77326.642.9339.79320.2389.5180.9864.68924.6178.8534.32889.0932.7163.55284.425.8211.43249.77347.8310.98200.1703.0834.43530.0937.82OpenBenchmarking.org

TensorFlow

Device: CPU - Batch Size: 256 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: VGG-16ab1020304050SE +/- 0.01, N = 345.7845.71

TensorFlow

Device: CPU - Batch Size: 512 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 512 - Model: ResNet-50ba20406080100104.61104.53

TensorFlow

Device: CPU - Batch Size: 64 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: VGG-16ba1020304050SE +/- 0.01, N = 344.7044.69

TensorFlow

Device: CPU - Batch Size: 256 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: ResNet-50ab20406080100101.92101.73

Blender

Blend File: Barbershop - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Barbershop - Compute: CPU-Onlyba50100150200250229.77230.13

TensorFlow

Device: CPU - Batch Size: 512 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 512 - Model: GoogLeNetab70140210280350326.63326.60

TensorFlow

Device: CPU - Batch Size: 32 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: VGG-16ba1020304050SE +/- 0.01, N = 342.9342.82

TensorFlow

Device: CPU - Batch Size: 16 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: VGG-16ba918273645SE +/- 0.05, N = 339.7939.78

TensorFlow

Device: CPU - Batch Size: 256 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: GoogLeNetab70140210280350320.31320.23

TensorFlow

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: ResNet-50ab2040608010089.8489.51

Blender

Blend File: Pabellon Barcelona - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Pabellon Barcelona - Compute: CPU-Onlyba2040608010080.9881.13

Blender

Blend File: Classroom - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Classroom - Compute: CPU-Onlyba142842567064.6864.85

TensorFlow

Device: CPU - Batch Size: 512 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 512 - Model: AlexNetab2004006008001000926.49924.61

TensorFlow

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: ResNet-50ab2040608010079.5478.85

Blender

Blend File: Junkshop - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Junkshop - Compute: CPU-Onlyab81624324034.3234.32

TensorFlow

Device: CPU - Batch Size: 256 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 256 - Model: AlexNetba2004006008001000889.09887.98

Blender

Blend File: Fishy Cat - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: Fishy Cat - Compute: CPU-Onlyba81624324032.7132.96

TensorFlow

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: ResNet-50ab142842567064.2963.55

TensorFlow

Device: CPU - Batch Size: 64 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: GoogLeNetab60120180240300285.85284.40

Blender

Blend File: BMW27 - Compute: CPU-Only

OpenBenchmarking.orgSeconds, Fewer Is BetterBlender 4.1Blend File: BMW27 - Compute: CPU-Onlyba61218243025.8226.08

TensorFlow

Device: CPU - Batch Size: 1 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: VGG-16ba3691215SE +/- 0.03, N = 311.4311.40

TensorFlow

Device: CPU - Batch Size: 32 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: GoogLeNetba50100150200250249.77249.12

TensorFlow

Device: CPU - Batch Size: 16 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: AlexNetab80160240320400SE +/- 0.47, N = 3349.15347.83

TensorFlow

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: ResNet-50ba369121510.9810.90

TensorFlow

Device: CPU - Batch Size: 16 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 16 - Model: GoogLeNetba4080120160200200.10199.74

TensorFlow

Device: CPU - Batch Size: 64 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 64 - Model: AlexNetab150300450600750704.03703.08

TensorFlow

Device: CPU - Batch Size: 1 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: AlexNetba816243240SE +/- 0.05, N = 334.4334.38

TensorFlow

Device: CPU - Batch Size: 32 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 32 - Model: AlexNetba110220330440550530.09529.36

TensorFlow

Device: CPU - Batch Size: 1 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.16.1Device: CPU - Batch Size: 1 - Model: GoogLeNetba91827364537.8235.28


Phoronix Test Suite v10.8.5