dfgg AMD Ryzen Threadripper 3970X 32-Core testing with a ASUS ROG ZENITH II EXTREME (1802 BIOS) and AMD Radeon RX 5700 8GB on Ubuntu 22.04 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2403165-NE-DFGG2384950&sor&grr .
dfgg Processor Motherboard Chipset Memory Disk Graphics Audio Monitor Network OS Kernel Desktop Display Server OpenGL Vulkan Compiler File-System Screen Resolution a b c AMD Ryzen Threadripper 3970X 32-Core @ 3.70GHz (32 Cores / 64 Threads) ASUS ROG ZENITH II EXTREME (1802 BIOS) AMD Starship/Matisse 4 x 16GB DDR4-3600MT/s Corsair CMT64GX4M4Z3600C16 Samsung SSD 980 PRO 500GB AMD Radeon RX 5700 8GB (1750/875MHz) AMD Navi 10 HDMI Audio ASUS VP28U Aquantia AQC107 NBase-T/IEEE + Intel I211 + Intel Wi-Fi 6 AX200 Ubuntu 22.04 6.5.0-21-generic (x86_64) GNOME Shell 42.2 X Server + Wayland 4.6 Mesa 22.0.1 (LLVM 13.0.1 DRM 3.54) 1.2.204 GCC 11.4.0 ext4 3840x2160 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0x830107a Python Details - Python 3.10.12 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_rstack_overflow: Mitigation of safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
dfgg build-linux-kernel: allmodconfig deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream build-linux-kernel: defconfig primesieve: 1e13 deepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Stream deepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Stream deepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Stream deepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream svt-av1: Preset 4 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 4K srsran: PDSCH Processor Benchmark, Throughput Total svt-av1: Preset 4 - Bosphorus 1080p compress-pbzip2: FreeBSD-13.0-RELEASE-amd64-memstick.img Compression draco: Church Facade svt-av1: Preset 8 - Bosphorus 1080p svt-av1: Preset 13 - Bosphorus 4K svt-av1: Preset 12 - Bosphorus 4K draco: Lion srsran: PDSCH Processor Benchmark, Throughput Thread primesieve: 1e12 svt-av1: Preset 12 - Bosphorus 1080p svt-av1: Preset 13 - Bosphorus 1080p a b c 488.895 11.5688 86.3905 46.704 68.354 5886.9549 2.4922 183.2881 5.4552 5.9275 168.5293 23.7722 672.3403 529.0850 30.0740 46.4169 344.2857 525.4017 30.3038 56.6725 17.6429 56.7246 17.6270 47.3193 21.1264 481.3091 33.1639 65.4072 244.4601 12.3168 81.1472 6.9635 143.4493 10.7442 93.0110 100.6851 158.6954 8.9514 1782.4027 49.8838 320.6006 49.7563 321.2932 6.9254 144.2424 1.3212 754.3277 4.698 45.489 11658.0 12.558 2.845905 7989 83.466 106.594 107.183 5258 484.5 5.503 297.094 369.311 490.322 11.5532 86.5036 49.296 68.224 5875.8518 2.4955 183.1426 5.4596 5.8612 170.4554 23.8567 669.9574 525.9196 30.2196 46.3528 344.9227 522.3522 30.5421 56.4424 17.7148 56.7171 17.6288 46.6399 21.4341 477.026 33.4545 65.1819 245.3457 11.8338 84.4546 6.7539 147.8901 10.6547 93.7892 100.9073 158.4993 8.797 1813.5947 49.6303 322.2325 49.6608 322.0418 6.6951 149.1998 1.3317 748.3525 4.746 46.03 11575.9 12.269 2.811454 8191 84.221 107.775 107.337 5275 490.6 5.521 298.398 368.722 490.076 11.6214 85.9966 49.243 68.127 5888.2219 2.4912 183.214 5.4574 5.8272 171.4475 23.7595 672.7182 530.6512 30.0742 46.3647 344.6603 524.8705 30.444 56.4921 17.6991 57.0002 17.5413 46.6702 21.4205 479.2889 33.3294 65.0212 245.9676 11.6625 85.698 6.7418 148.1563 10.646 93.8712 101.1005 158.0423 8.7013 1833.3638 49.3038 324.3704 49.4186 323.6078 6.8307 146.2299 1.2875 774.0576 4.762 45.724 11512.1 12.588 2.894649 8165 83.688 108.229 108.614 5199 484.4 5.513 298.839 365.613 OpenBenchmarking.org
Timed Linux Kernel Compilation Build: allmodconfig OpenBenchmarking.org Seconds, Fewer Is Better Timed Linux Kernel Compilation 6.8 Build: allmodconfig a c b 110 220 330 440 550 SE +/- 1.04, N = 3 488.90 490.08 490.32
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream b a c 3 6 9 12 15 SE +/- 0.03, N = 3 11.55 11.57 11.62
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream b a c 20 40 60 80 100 SE +/- 0.20, N = 3 86.50 86.39 86.00
Timed Linux Kernel Compilation Build: defconfig OpenBenchmarking.org Seconds, Fewer Is Better Timed Linux Kernel Compilation 6.8 Build: defconfig a c b 11 22 33 44 55 SE +/- 0.46, N = 6 46.70 49.24 49.30
Primesieve Length: 1e13 OpenBenchmarking.org Seconds, Fewer Is Better Primesieve 12.1 Length: 1e13 c b a 15 30 45 60 75 SE +/- 0.11, N = 3 68.13 68.22 68.35 1. (CXX) g++ options: -O3
Neural Magic DeepSparse Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream b a c 1300 2600 3900 5200 6500 SE +/- 22.16, N = 3 5875.85 5886.95 5888.22
Neural Magic DeepSparse Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream b a c 0.5615 1.123 1.6845 2.246 2.8075 SE +/- 0.0102, N = 3 2.4955 2.4922 2.4912
Neural Magic DeepSparse Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream b c a 40 80 120 160 200 SE +/- 0.03, N = 3 183.14 183.21 183.29
Neural Magic DeepSparse Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream b c a 1.2284 2.4568 3.6852 4.9136 6.142 SE +/- 0.0010, N = 3 5.4596 5.4574 5.4552
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream c b a 1.3337 2.6674 4.0011 5.3348 6.6685 SE +/- 0.0182, N = 3 5.8272 5.8612 5.9275
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream c b a 40 80 120 160 200 SE +/- 0.52, N = 3 171.45 170.46 168.53
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream c a b 6 12 18 24 30 SE +/- 0.02, N = 3 23.76 23.77 23.86
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream c a b 150 300 450 600 750 SE +/- 0.46, N = 3 672.72 672.34 669.96
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream b a c 110 220 330 440 550 SE +/- 3.49, N = 3 525.92 529.09 530.65
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream b c a 7 14 21 28 35 SE +/- 0.22, N = 3 30.22 30.07 30.07
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream b c a 11 22 33 44 55 SE +/- 0.02, N = 3 46.35 46.36 46.42
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream b c a 70 140 210 280 350 SE +/- 0.16, N = 3 344.92 344.66 344.29
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream b c a 110 220 330 440 550 SE +/- 2.27, N = 3 522.35 524.87 525.40
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream b c a 7 14 21 28 35 SE +/- 0.12, N = 3 30.54 30.44 30.30
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream b c a 13 26 39 52 65 SE +/- 0.03, N = 3 56.44 56.49 56.67
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream b c a 4 8 12 16 20 SE +/- 0.01, N = 3 17.71 17.70 17.64
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream b a c 13 26 39 52 65 SE +/- 0.19, N = 3 56.72 56.72 57.00
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream b a c 4 8 12 16 20 SE +/- 0.06, N = 3 17.63 17.63 17.54
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream b c a 11 22 33 44 55 SE +/- 0.04, N = 3 46.64 46.67 47.32
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream b c a 5 10 15 20 25 SE +/- 0.02, N = 3 21.43 21.42 21.13
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream b c a 100 200 300 400 500 SE +/- 2.17, N = 3 477.03 479.29 481.31
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream b c a 8 16 24 32 40 SE +/- 0.16, N = 3 33.45 33.33 33.16
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream c b a 15 30 45 60 75 SE +/- 0.11, N = 3 65.02 65.18 65.41
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream c b a 50 100 150 200 250 SE +/- 0.41, N = 3 245.97 245.35 244.46
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream c b a 3 6 9 12 15 SE +/- 0.04, N = 3 11.66 11.83 12.32
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream c b a 20 40 60 80 100 SE +/- 0.28, N = 3 85.70 84.45 81.15
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream c b a 2 4 6 8 10 SE +/- 0.0188, N = 3 6.7418 6.7539 6.9635
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream c b a 30 60 90 120 150 SE +/- 0.39, N = 3 148.16 147.89 143.45
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream c b a 3 6 9 12 15 SE +/- 0.01, N = 3 10.65 10.65 10.74
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream c b a 20 40 60 80 100 SE +/- 0.10, N = 3 93.87 93.79 93.01
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c 20 40 60 80 100 SE +/- 0.70, N = 3 100.69 100.91 101.10
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c 40 80 120 160 200 SE +/- 1.03, N = 3 158.70 158.50 158.04
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream c b a 3 6 9 12 15 SE +/- 0.0977, N = 3 8.7013 8.7970 8.9514
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream c b a 400 800 1200 1600 2000 SE +/- 19.60, N = 3 1833.36 1813.59 1782.40
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream c b a 11 22 33 44 55 SE +/- 0.11, N = 3 49.30 49.63 49.88
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream c b a 70 140 210 280 350 SE +/- 0.69, N = 3 324.37 322.23 320.60
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream c b a 11 22 33 44 55 SE +/- 0.11, N = 3 49.42 49.66 49.76
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream c b a 70 140 210 280 350 SE +/- 0.63, N = 3 323.61 322.04 321.29
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream b c a 2 4 6 8 10 SE +/- 0.0182, N = 3 6.6951 6.8307 6.9254
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream b c a 30 60 90 120 150 SE +/- 0.38, N = 3 149.20 146.23 144.24
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream c a b 0.2996 0.5992 0.8988 1.1984 1.498 SE +/- 0.0011, N = 3 1.2875 1.3212 1.3317
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream c a b 170 340 510 680 850 SE +/- 0.57, N = 3 774.06 754.33 748.35
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 4 - Input: Bosphorus 4K c b a 1.0715 2.143 3.2145 4.286 5.3575 SE +/- 0.034, N = 3 4.762 4.746 4.698 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 8 - Input: Bosphorus 4K b c a 10 20 30 40 50 SE +/- 0.14, N = 3 46.03 45.72 45.49 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
srsRAN Project Test: PDSCH Processor Benchmark, Throughput Total OpenBenchmarking.org Mbps, More Is Better srsRAN Project 23.10.1-20240219 Test: PDSCH Processor Benchmark, Throughput Total a b c 2K 4K 6K 8K 10K SE +/- 24.76, N = 3 11658.0 11575.9 11512.1 1. (CXX) g++ options: -march=native -mavx2 -mavx -msse4.1 -mfma -O3 -fno-trapping-math -fno-math-errno -ldl
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 4 - Input: Bosphorus 1080p c a b 3 6 9 12 15 SE +/- 0.05, N = 3 12.59 12.56 12.27 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
Parallel BZIP2 Compression FreeBSD-13.0-RELEASE-amd64-memstick.img Compression OpenBenchmarking.org Seconds, Fewer Is Better Parallel BZIP2 Compression 1.1.13 FreeBSD-13.0-RELEASE-amd64-memstick.img Compression b a c 0.6513 1.3026 1.9539 2.6052 3.2565 SE +/- 0.034154, N = 15 2.811454 2.845905 2.894649 1. (CXX) g++ options: -O2 -pthread -lbz2 -lpthread
Google Draco Model: Church Facade OpenBenchmarking.org ms, Fewer Is Better Google Draco 1.5.6 Model: Church Facade a c b 2K 4K 6K 8K 10K SE +/- 22.55, N = 3 7989 8165 8191 1. (CXX) g++ options: -O3
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 8 - Input: Bosphorus 1080p b c a 20 40 60 80 100 SE +/- 0.49, N = 3 84.22 83.69 83.47 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 13 - Input: Bosphorus 4K c b a 20 40 60 80 100 SE +/- 0.60, N = 3 108.23 107.78 106.59 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 12 - Input: Bosphorus 4K c b a 20 40 60 80 100 SE +/- 0.17, N = 3 108.61 107.34 107.18 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
Google Draco Model: Lion OpenBenchmarking.org ms, Fewer Is Better Google Draco 1.5.6 Model: Lion c a b 1100 2200 3300 4400 5500 SE +/- 8.19, N = 3 5199 5258 5275 1. (CXX) g++ options: -O3
srsRAN Project Test: PDSCH Processor Benchmark, Throughput Thread OpenBenchmarking.org Mbps, More Is Better srsRAN Project 23.10.1-20240219 Test: PDSCH Processor Benchmark, Throughput Thread b a c 110 220 330 440 550 SE +/- 1.73, N = 3 490.6 484.5 484.4 1. (CXX) g++ options: -march=native -mavx2 -mavx -msse4.1 -mfma -O3 -fno-trapping-math -fno-math-errno -ldl
Primesieve Length: 1e12 OpenBenchmarking.org Seconds, Fewer Is Better Primesieve 12.1 Length: 1e12 a c b 1.2422 2.4844 3.7266 4.9688 6.211 SE +/- 0.005, N = 3 5.503 5.513 5.521 1. (CXX) g++ options: -O3
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 12 - Input: Bosphorus 1080p c b a 70 140 210 280 350 SE +/- 2.26, N = 3 298.84 298.40 297.09 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 13 - Input: Bosphorus 1080p a b c 80 160 240 320 400 SE +/- 0.76, N = 3 369.31 368.72 365.61 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
Phoronix Test Suite v10.8.5