svt deepsparse AMD Ryzen Threadripper 7980X 64-Cores testing with a System76 Thelio Major (FA Z5 BIOS) and AMD Radeon Pro W7900 45GB on Ubuntu 23.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2403159-PTS-SVTDEEPS65&sor&grr .
svt deepsparse Processor Motherboard Chipset Memory Disk Graphics Audio Monitor Network OS Kernel Desktop Display Server OpenGL Compiler File-System Screen Resolution a b c d AMD Ryzen Threadripper 7980X 64-Cores @ 7.79GHz (64 Cores / 128 Threads) System76 Thelio Major (FA Z5 BIOS) AMD Device 14a4 4 x 32GB DRAM-4800MT/s Micron MTC20F1045S1RC48BA2 1000GB CT1000T700SSD5 AMD Radeon Pro W7900 45GB (1760/1124MHz) AMD Device 14cc DELL P2415Q Aquantia AQC113C NBase-T/IEEE + Realtek RTL8125 2.5GbE + Intel Wi-Fi 6 AX210/AX211/AX411 Ubuntu 23.10 6.5.0-25-generic (x86_64) GNOME Shell 45.2 X Server + Wayland 4.6 Mesa 23.2.1-1ubuntu3.1 (LLVM 15.0.7 DRM 3.54) GCC 13.2.0 ext4 1920x1080 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xa108105 Python Details - Python 3.11.6 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
svt deepsparse deepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Stream deepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Stream deepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Stream deepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream svt-av1: Preset 4 - Bosphorus 4K svt-av1: Preset 13 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 4K svt-av1: Preset 4 - Bosphorus 1080p svt-av1: Preset 12 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 1080p svt-av1: Preset 13 - Bosphorus 1080p svt-av1: Preset 12 - Bosphorus 1080p a b c d 2252.4627 3.4391 89.8704 11.1249 3.9594 252.3577 8.9970 887.4442 11.1350 89.7091 20.1516 396.5768 363.5336 21.9224 365.3355 21.8474 58.0191 17.2332 58.0689 17.2184 202.0153 39.5729 33.5681 29.7744 8.8070 113.4701 42.4509 188.3255 0.8788 1134.7704 3.5332 2253.8602 61.7698 129.4408 11.4406 87.3635 29.1453 274.2576 29.1108 274.5853 5.8423 170.9594 5.8648 170.3090 9.892 192.567 94.509 27.476 188.558 193.759 662.493 616.583 2251.6125 3.4406 90.7521 11.0159 3.9707 251.6102 9.0094 886.1847 11.0383 90.4983 20.1585 396.4446 364.4283 21.9027 365.9832 21.8225 58.0188 17.2332 58.1442 17.1960 202.5056 39.4685 33.5194 29.8179 8.7347 114.4072 42.4853 188.1505 0.8810 1131.6373 3.5087 2269.5068 61.9978 128.9560 11.4159 87.5496 29.1215 274.4692 29.1324 274.3872 5.8302 171.3099 5.8243 171.4934 9.793 193.286 93.734 27.282 195.907 194.769 653.688 615.540 2258.1407 3.4298 90.2253 11.0814 3.9766 251.2477 9.0252 884.6567 11.1223 89.8053 20.1007 397.5870 363.7623 21.9041 365.5771 21.8606 58.0207 17.2329 58.1916 17.1825 202.3677 39.4664 33.5525 29.7891 8.7752 113.8761 42.4756 188.2128 0.8796 1133.4956 3.5324 2254.2228 61.9371 129.1012 11.4055 87.6317 29.1230 274.4696 29.1435 274.2789 5.8312 171.2808 5.8245 171.4781 9.889 192.638 93.930 27.518 194.065 189.608 671.832 625.817 2259.2648 3.4284 90.7667 11.0145 3.9490 253.0264 9.0040 886.7758 11.0513 90.3875 20.1014 397.5652 363.5857 21.9527 366.6823 21.7950 58.0879 17.2130 58.1383 17.1981 202.4630 39.4525 33.5532 29.7882 8.7026 114.8252 42.4217 188.4415 0.8806 1132.3151 3.5604 2236.9169 61.7579 129.4552 11.4067 87.6213 29.1232 274.4604 29.1083 274.5981 5.8281 171.3647 5.8285 171.3561 9.866 187.625 94.559 27.241 195.858 195.612 670.138 621.442 OpenBenchmarking.org
Neural Magic DeepSparse Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream b a c d 500 1000 1500 2000 2500 SE +/- 0.34, N = 3 SE +/- 3.18, N = 3 SE +/- 1.96, N = 3 SE +/- 1.96, N = 3 2251.61 2252.46 2258.14 2259.26
Neural Magic DeepSparse Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream b a c d 0.7741 1.5482 2.3223 3.0964 3.8705 SE +/- 0.0006, N = 3 SE +/- 0.0053, N = 3 SE +/- 0.0031, N = 3 SE +/- 0.0032, N = 3 3.4406 3.4391 3.4298 3.4284
Neural Magic DeepSparse Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream a c b d 20 40 60 80 100 SE +/- 0.58, N = 3 SE +/- 0.49, N = 3 SE +/- 0.01, N = 3 SE +/- 0.02, N = 3 89.87 90.23 90.75 90.77
Neural Magic DeepSparse Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream a c b d 3 6 9 12 15 SE +/- 0.07, N = 3 SE +/- 0.06, N = 3 SE +/- 0.00, N = 3 SE +/- 0.00, N = 3 11.12 11.08 11.02 11.01
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream d a b c 0.8947 1.7894 2.6841 3.5788 4.4735 SE +/- 0.0293, N = 3 SE +/- 0.0204, N = 3 SE +/- 0.0031, N = 3 SE +/- 0.0030, N = 3 3.9490 3.9594 3.9707 3.9766
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream d a b c 60 120 180 240 300 SE +/- 1.88, N = 3 SE +/- 1.31, N = 3 SE +/- 0.19, N = 3 SE +/- 0.20, N = 3 253.03 252.36 251.61 251.25
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream a d b c 3 6 9 12 15 SE +/- 0.0068, N = 3 SE +/- 0.0073, N = 3 SE +/- 0.0071, N = 3 SE +/- 0.0015, N = 3 8.9970 9.0040 9.0094 9.0252
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream a d b c 200 400 600 800 1000 SE +/- 0.68, N = 3 SE +/- 0.73, N = 3 SE +/- 0.69, N = 3 SE +/- 0.15, N = 3 887.44 886.78 886.18 884.66
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream b d c a 3 6 9 12 15 SE +/- 0.04, N = 3 SE +/- 0.01, N = 3 SE +/- 0.02, N = 3 SE +/- 0.03, N = 3 11.04 11.05 11.12 11.14
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream b d c a 20 40 60 80 100 SE +/- 0.29, N = 3 SE +/- 0.05, N = 3 SE +/- 0.14, N = 3 SE +/- 0.23, N = 3 90.50 90.39 89.81 89.71
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream c d a b 5 10 15 20 25 SE +/- 0.02, N = 3 SE +/- 0.01, N = 3 SE +/- 0.01, N = 3 SE +/- 0.04, N = 3 20.10 20.10 20.15 20.16
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream c d a b 90 180 270 360 450 SE +/- 0.37, N = 3 SE +/- 0.27, N = 3 SE +/- 0.23, N = 3 SE +/- 0.87, N = 3 397.59 397.57 396.58 396.44
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream a d c b 80 160 240 320 400 SE +/- 0.17, N = 3 SE +/- 1.03, N = 3 SE +/- 0.33, N = 3 SE +/- 0.43, N = 3 363.53 363.59 363.76 364.43
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream d a c b 5 10 15 20 25 SE +/- 0.04, N = 3 SE +/- 0.02, N = 3 SE +/- 0.01, N = 3 SE +/- 0.01, N = 3 21.95 21.92 21.90 21.90
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream a c b d 80 160 240 320 400 SE +/- 0.99, N = 3 SE +/- 0.63, N = 3 SE +/- 0.38, N = 3 SE +/- 0.31, N = 3 365.34 365.58 365.98 366.68
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream c a b d 5 10 15 20 25 SE +/- 0.04, N = 3 SE +/- 0.08, N = 3 SE +/- 0.02, N = 3 SE +/- 0.03, N = 3 21.86 21.85 21.82 21.80
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream b a c d 13 26 39 52 65 SE +/- 0.05, N = 3 SE +/- 0.03, N = 3 SE +/- 0.03, N = 3 SE +/- 0.07, N = 3 58.02 58.02 58.02 58.09
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream b a c d 4 8 12 16 20 SE +/- 0.02, N = 3 SE +/- 0.01, N = 3 SE +/- 0.01, N = 3 SE +/- 0.02, N = 3 17.23 17.23 17.23 17.21
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream a d b c 13 26 39 52 65 SE +/- 0.06, N = 3 SE +/- 0.04, N = 3 SE +/- 0.03, N = 3 SE +/- 0.05, N = 3 58.07 58.14 58.14 58.19
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream a d b c 4 8 12 16 20 SE +/- 0.02, N = 3 SE +/- 0.01, N = 3 SE +/- 0.01, N = 3 SE +/- 0.01, N = 3 17.22 17.20 17.20 17.18
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream a c d b 40 80 120 160 200 SE +/- 0.12, N = 3 SE +/- 0.08, N = 3 SE +/- 0.10, N = 3 SE +/- 0.18, N = 3 202.02 202.37 202.46 202.51
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream a b c d 9 18 27 36 45 SE +/- 0.02, N = 3 SE +/- 0.04, N = 3 SE +/- 0.03, N = 3 SE +/- 0.04, N = 3 39.57 39.47 39.47 39.45
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream b c d a 8 16 24 32 40 SE +/- 0.01, N = 3 SE +/- 0.00, N = 3 SE +/- 0.03, N = 3 SE +/- 0.02, N = 3 33.52 33.55 33.55 33.57
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream b c d a 7 14 21 28 35 SE +/- 0.01, N = 3 SE +/- 0.00, N = 3 SE +/- 0.02, N = 3 SE +/- 0.02, N = 3 29.82 29.79 29.79 29.77
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream d b c a 2 4 6 8 10 SE +/- 0.0260, N = 3 SE +/- 0.0397, N = 3 SE +/- 0.0131, N = 3 SE +/- 0.0288, N = 3 8.7026 8.7347 8.7752 8.8070
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream d b c a 30 60 90 120 150 SE +/- 0.34, N = 3 SE +/- 0.52, N = 3 SE +/- 0.17, N = 3 SE +/- 0.37, N = 3 114.83 114.41 113.88 113.47
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream d a c b 10 20 30 40 50 SE +/- 0.00, N = 3 SE +/- 0.02, N = 3 SE +/- 0.01, N = 3 SE +/- 0.01, N = 3 42.42 42.45 42.48 42.49
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream d a c b 40 80 120 160 200 SE +/- 0.00, N = 3 SE +/- 0.07, N = 3 SE +/- 0.05, N = 3 SE +/- 0.02, N = 3 188.44 188.33 188.21 188.15
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream a c d b 0.1982 0.3964 0.5946 0.7928 0.991 SE +/- 0.0021, N = 3 SE +/- 0.0025, N = 3 SE +/- 0.0042, N = 3 SE +/- 0.0054, N = 3 0.8788 0.8796 0.8806 0.8810
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream a c d b 200 400 600 800 1000 SE +/- 2.80, N = 3 SE +/- 3.06, N = 3 SE +/- 5.41, N = 3 SE +/- 7.00, N = 3 1134.77 1133.50 1132.32 1131.64
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream b c a d 0.8011 1.6022 2.4033 3.2044 4.0055 SE +/- 0.0132, N = 3 SE +/- 0.0151, N = 3 SE +/- 0.0104, N = 3 SE +/- 0.0258, N = 3 3.5087 3.5324 3.5332 3.5604
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream b c a d 500 1000 1500 2000 2500 SE +/- 8.66, N = 3 SE +/- 9.51, N = 3 SE +/- 6.75, N = 3 SE +/- 15.99, N = 3 2269.51 2254.22 2253.86 2236.92
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream d a c b 14 28 42 56 70 SE +/- 0.07, N = 3 SE +/- 0.09, N = 3 SE +/- 0.21, N = 3 SE +/- 0.07, N = 3 61.76 61.77 61.94 62.00
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream d a c b 30 60 90 120 150 SE +/- 0.18, N = 3 SE +/- 0.18, N = 3 SE +/- 0.42, N = 3 SE +/- 0.15, N = 3 129.46 129.44 129.10 128.96
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream c d b a 3 6 9 12 15 SE +/- 0.01, N = 3 SE +/- 0.01, N = 3 SE +/- 0.01, N = 3 SE +/- 0.02, N = 3 11.41 11.41 11.42 11.44
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream c d b a 20 40 60 80 100 SE +/- 0.06, N = 3 SE +/- 0.08, N = 3 SE +/- 0.07, N = 3 SE +/- 0.16, N = 3 87.63 87.62 87.55 87.36
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream b c d a 7 14 21 28 35 SE +/- 0.02, N = 3 SE +/- 0.01, N = 3 SE +/- 0.02, N = 3 SE +/- 0.00, N = 3 29.12 29.12 29.12 29.15
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream c b d a 60 120 180 240 300 SE +/- 0.11, N = 3 SE +/- 0.15, N = 3 SE +/- 0.20, N = 3 SE +/- 0.04, N = 3 274.47 274.47 274.46 274.26
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream d a b c 7 14 21 28 35 SE +/- 0.04, N = 3 SE +/- 0.03, N = 3 SE +/- 0.00, N = 3 SE +/- 0.01, N = 3 29.11 29.11 29.13 29.14
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream d a b c 60 120 180 240 300 SE +/- 0.36, N = 3 SE +/- 0.26, N = 3 SE +/- 0.04, N = 3 SE +/- 0.12, N = 3 274.60 274.59 274.39 274.28
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream d b c a 1.3145 2.629 3.9435 5.258 6.5725 SE +/- 0.0043, N = 3 SE +/- 0.0134, N = 3 SE +/- 0.0039, N = 3 SE +/- 0.0009, N = 3 5.8281 5.8302 5.8312 5.8423
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream d b c a 40 80 120 160 200 SE +/- 0.12, N = 3 SE +/- 0.40, N = 3 SE +/- 0.12, N = 3 SE +/- 0.03, N = 3 171.36 171.31 171.28 170.96
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream b c d a 1.3196 2.6392 3.9588 5.2784 6.598 SE +/- 0.0004, N = 3 SE +/- 0.0053, N = 3 SE +/- 0.0066, N = 3 SE +/- 0.0111, N = 3 5.8243 5.8245 5.8285 5.8648
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream b c d a 40 80 120 160 200 SE +/- 0.01, N = 3 SE +/- 0.16, N = 3 SE +/- 0.19, N = 3 SE +/- 0.32, N = 3 171.49 171.48 171.36 170.31
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 4 - Input: Bosphorus 4K a c d b 3 6 9 12 15 SE +/- 0.009, N = 3 SE +/- 0.028, N = 3 SE +/- 0.034, N = 3 SE +/- 0.014, N = 3 9.892 9.889 9.866 9.793 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 13 - Input: Bosphorus 4K b c a d 40 80 120 160 200 SE +/- 2.02, N = 15 SE +/- 2.22, N = 3 SE +/- 2.20, N = 3 SE +/- 1.36, N = 3 193.29 192.64 192.57 187.63 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 8 - Input: Bosphorus 4K d a c b 20 40 60 80 100 SE +/- 0.60, N = 3 SE +/- 0.33, N = 3 SE +/- 0.20, N = 3 SE +/- 0.31, N = 3 94.56 94.51 93.93 93.73 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 4 - Input: Bosphorus 1080p c a b d 6 12 18 24 30 SE +/- 0.16, N = 3 SE +/- 0.22, N = 3 SE +/- 0.10, N = 3 SE +/- 0.12, N = 3 27.52 27.48 27.28 27.24 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 12 - Input: Bosphorus 4K b d c a 40 80 120 160 200 SE +/- 2.54, N = 3 SE +/- 2.35, N = 3 SE +/- 1.67, N = 3 SE +/- 2.09, N = 5 195.91 195.86 194.07 188.56 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 8 - Input: Bosphorus 1080p d b a c 40 80 120 160 200 SE +/- 1.92, N = 3 SE +/- 1.86, N = 3 SE +/- 2.31, N = 3 SE +/- 0.78, N = 3 195.61 194.77 193.76 189.61 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 13 - Input: Bosphorus 1080p c d a b 140 280 420 560 700 SE +/- 5.18, N = 15 SE +/- 6.00, N = 15 SE +/- 3.32, N = 3 SE +/- 1.76, N = 3 671.83 670.14 662.49 653.69 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 12 - Input: Bosphorus 1080p c d a b 140 280 420 560 700 SE +/- 4.75, N = 3 SE +/- 4.99, N = 3 SE +/- 8.04, N = 3 SE +/- 5.36, N = 3 625.82 621.44 616.58 615.54 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
Phoronix Test Suite v10.8.5