dges

Intel Core i7-5960X testing with a Gigabyte X99-UD4-CF (F24c BIOS) and NVIDIA GeForce 6600 GT on Debian 12 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2403101-NE-DGES3502010
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
March 10
  59 Minutes
b
March 10
  59 Minutes
c
March 10
  59 Minutes
Invert Behavior (Only Show Selected Data)
  59 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


dgesOpenBenchmarking.orgPhoronix Test SuiteIntel Core i7-5960X @ 3.50GHz (8 Cores / 16 Threads)Gigabyte X99-UD4-CF (F24c BIOS)Intel Xeon E7 v3/Xeon8 x 4GB DDR4-2400MT/s CMK16GX4M4A2666C16120GB INTEL SSDSC2BW12NVIDIA GeForce 6600 GTRealtek ALC1150Intel I218-VDebian 126.1.0-11-amd64 (x86_64)GCC 12.2.0ext4ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelCompilerFile-SystemDges PerformanceSystem Logs- Transparent Huge Pages: always- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-bTRWOB/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-bTRWOB/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - Scaling Governor: intel_cpufreq schedutil - CPU Microcode: 0x3d- Python 3.11.2- gather_data_sampling: Not affected + itlb_multihit: KVM: Mitigation of VMX unsupported + l1tf: Mitigation of PTE Inversion + mds: Vulnerable: Clear buffers attempted no microcode; SMT vulnerable + meltdown: Mitigation of PTI + mmio_stale_data: Vulnerable: Clear buffers attempted no microcode; SMT vulnerable + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: conditional RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

abcResult OverviewPhoronix Test Suite100%101%102%103%104%Parallel BZIP2 CompressiononeDNNChaos Group V-RAYWavPack Audio EncodingOpenVINOJPEG-XL Decoding libjxlsrsRAN ProjectJPEG-XL libjxlGoogle Draco

dgesjpegxl: PNG - 80jpegxl: JPEG - 80onednn: Recurrent Neural Network Training - CPUjpegxl: PNG - 90jpegxl: JPEG - 90onednn: Recurrent Neural Network Inference - CPUv-ray: CPUjpegxl: JPEG - 100jpegxl: PNG - 100openvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Noise Suppression Poconet-Like FP16 - CPUopenvino: Noise Suppression Poconet-Like FP16 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUjpegxl-decode: 1jpegxl-decode: Allsrsran: PUSCH Processor Benchmark, Throughput Threadonednn: Deconvolution Batch shapes_1d - CPUsrsran: PUSCH Processor Benchmark, Throughput Totalsrsran: PDSCH Processor Benchmark, Throughput Totalonednn: IP Shapes 1D - CPUcompress-pbzip2: FreeBSD-13.0-RELEASE-amd64-memstick.img Compressiondraco: Church Facadeonednn: IP Shapes 3D - CPUsrsran: PDSCH Processor Benchmark, Throughput Threadencode-wavpack: WAV To WavPackdraco: Liononednn: Convolution Batch Shapes Auto - CPUonednn: Deconvolution Batch shapes_3d - CPUabc16.0115.945121.7214.4614.8112754.3989306.9427.0621697.612.352215.181.8202.0419.7717922.33204.919.547.1584.7919.88201.0416.14247.16103.4777.2617.16232.988248.7522.63176.6363.5162.947.56528.3633.58238.1429.24136.78.61463.9625.27158.191.127068.611.694700.6643.181278.17489.27.3458578.52684.68.3406612.18185677369.58412290.58.934625410.63229.1781915.55615.665067.2414.89514.9612782.6290776.9757.0641684.012.362211.161.79199.0420.07178.6722.38203.6419.6247.0984.920.32196.7115.99249.36104.3976.5617.12233.4781.6848.9422.81175.2161.1565.397.52531.0433.51238.6128.81138.738.64462.0525.27158.21.127113.971.694719.9743.262279897.41562578.12750.88.3289412.61774376959.54774290.79.058621510.635911.131715.7715.9934969.6714.36114.9492835.1690126.9817.0811690.862.352199.211.79199.9919.98184.2121.7204.2819.5847.284.6919.78202.0816.04248.74109.4173.0817.08234.0383.4447.9122.59176.9765.7960.767.53530.7733.57238.2329.12137.288.86450.5925.52156.651.137055.761.74692.5643.284282.65689.37.2803578.92667.78.3506812.58737277399.57295290.39.073624010.61429.13654OpenBenchmarking.org

JPEG-XL libjxl

The JPEG XL Image Coding System is designed to provide next-generation JPEG image capabilities with JPEG XL offering better image quality and compression over legacy JPEG. This test profile is currently focused on the multi-threaded JPEG XL image encode performance using the reference libjxl library. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: PNG - Quality: 80bca4812162015.5615.7716.011. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: JPEG - Quality: 80bac4812162015.6615.9415.991. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Training - Engine: CPUabc110022003300440055005121.725067.244969.67MIN: 4980.76MIN: 4932.09MIN: 4924.31. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

JPEG-XL libjxl

The JPEG XL Image Coding System is designed to provide next-generation JPEG image capabilities with JPEG XL offering better image quality and compression over legacy JPEG. This test profile is currently focused on the multi-threaded JPEG XL image encode performance using the reference libjxl library. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: PNG - Quality: 90cab4812162014.3614.4614.901. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: JPEG - Quality: 90acb4812162014.8114.9514.961. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Inference - Engine: CPUcba60012001800240030002835.162782.622754.39MIN: 2665.4MIN: 2675.44MIN: 2715.141. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Chaos Group V-RAY

This is a test of Chaos Group's V-RAY benchmark. V-RAY is a commercial renderer that can integrate with various creator software products like SketchUp and 3ds Max. The V-RAY benchmark is standalone and supports CPU and NVIDIA CUDA/RTX based rendering. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgvsamples, More Is BetterChaos Group V-RAY 6.0Mode: CPUacb2K4K6K8K10K893090129077

JPEG-XL libjxl

The JPEG XL Image Coding System is designed to provide next-generation JPEG image capabilities with JPEG XL offering better image quality and compression over legacy JPEG. This test profile is currently focused on the multi-threaded JPEG XL image encode performance using the reference libjxl library. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: JPEG - Quality: 100abc2468106.9426.9756.9811. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL libjxl 0.10.1Input: PNG - Quality: 100abc2468107.0627.0647.0811. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm

OpenVINO

This is a test of the Intel OpenVINO, a toolkit around neural networks, using its built-in benchmarking support and analyzing the throughput and latency for various models. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUacb4008001200160020001697.611690.861684.01MIN: 1370.16 / MAX: 1893.1MIN: 1393.43 / MAX: 1885.89MIN: 1331.99 / MAX: 1805.621. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUacb0.5311.0621.5932.1242.6552.352.352.361. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUabc50010001500200025002215.182211.162199.21MIN: 1888.45 / MAX: 2453.51MIN: 1887.06 / MAX: 2696.89MIN: 1898.17 / MAX: 2412.541. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUbca0.4050.811.2151.622.0251.791.791.801. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUacb4080120160200202.04199.99199.04MIN: 175.09 / MAX: 303.23MIN: 174.95 / MAX: 270.86MIN: 173.03 / MAX: 297.161. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUacb51015202519.7719.9820.071. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUcab4080120160200184.21179.00178.67MIN: 151.74 / MAX: 289.27MIN: 106.28 / MAX: 303.96MIN: 150.9 / MAX: 279.291. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUcab51015202521.7022.3322.381. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUacb4080120160200204.90204.28203.64MIN: 115.67 / MAX: 264.68MIN: 174.15 / MAX: 252.09MIN: 106.25 / MAX: 277.781. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUacb51015202519.5019.5819.621. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUcab112233445547.2047.1547.09MIN: 40.75 / MAX: 87.73MIN: 30.27 / MAX: 91.18MIN: 28.58 / MAX: 117.291. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUcab2040608010084.6984.7984.901. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUbac51015202520.3219.8819.78MIN: 17.15 / MAX: 44.13MIN: 14.01 / MAX: 40.26MIN: 17.63 / MAX: 65.841. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUbac4080120160200196.71201.04202.081. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUacb4812162016.1416.0415.99MIN: 9.62 / MAX: 67.19MIN: 10.33 / MAX: 74.1MIN: 14.05 / MAX: 45.71. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUacb50100150200250247.16248.74249.361. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUcba20406080100109.41104.39103.47MIN: 81.8 / MAX: 189.18MIN: 85.68 / MAX: 133.79MIN: 67.17 / MAX: 160.831. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUcba2040608010073.0876.5677.261. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUabc4812162017.1617.1217.08MIN: 14.07 / MAX: 48.68MIN: 13.71 / MAX: 48.44MIN: 13.08 / MAX: 59.931. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUabc50100150200250232.98233.47234.031. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUcab2040608010083.4482.0081.68MIN: 43.72 / MAX: 135.52MIN: 38.46 / MAX: 106.48MIN: 50.04 / MAX: 136.461. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUcab112233445547.9148.7548.941. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUbac51015202522.8122.6322.59MIN: 16.47 / MAX: 53.58MIN: 17.51 / MAX: 66.83MIN: 19.27 / MAX: 31.241. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUbac4080120160200175.21176.63176.971. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUcab153045607565.7963.5161.15MIN: 51.55 / MAX: 110.97MIN: 50.34 / MAX: 107.56MIN: 51.69 / MAX: 107.951. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUcab153045607560.7662.9465.391. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUacb2468107.567.537.52MIN: 5.17 / MAX: 29.42MIN: 5.17 / MAX: 27.59MIN: 5.52 / MAX: 32.351. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUacb110220330440550528.36530.77531.041. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUacb81624324033.5833.5733.51MIN: 20.56 / MAX: 77.54MIN: 22.9 / MAX: 82.78MIN: 20.58 / MAX: 76.581. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUacb50100150200250238.14238.23238.611. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUacb71421283529.2429.1228.81MIN: 22.37 / MAX: 54.65MIN: 22.46 / MAX: 67.63MIN: 21.62 / MAX: 75.911. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUacb306090120150136.70137.28138.731. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUcba2468108.868.648.61MIN: 4.7 / MAX: 25.16MIN: 6.34 / MAX: 50.32MIN: 7.15 / MAX: 141. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUcba100200300400500450.59462.05463.961. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUcba61218243025.5225.2725.27MIN: 20.66 / MAX: 49.48MIN: 20.5 / MAX: 56.18MIN: 12.94 / MAX: 56.121. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUcab306090120150156.65158.19158.201. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUcba0.25430.50860.76291.01721.27151.131.121.12MIN: 0.63 / MAX: 42.68MIN: 0.63 / MAX: 39.86MIN: 0.64 / MAX: 46.661. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUcab150030004500600075007055.767068.617113.971. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUcba0.38250.7651.14751.531.91251.701.691.69MIN: 1.25 / MAX: 40.68MIN: 0.93 / MAX: 52.49MIN: 0.89 / MAX: 63.591. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUcab100020003000400050004692.564700.664719.971. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

JPEG-XL Decoding libjxl

The JPEG XL Image Coding System is designed to provide next-generation JPEG image capabilities with JPEG XL offering better image quality and compression over legacy JPEG. This test profile is suited for JPEG XL decode performance testing to PNG output file, the pts/jpexl test is for encode performance. The JPEG XL encoding/decoding is done using the libjxl codebase. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL Decoding libjxl 0.10.1CPU Threads: 1abc102030405043.1843.2643.28

OpenBenchmarking.orgMP/s, More Is BetterJPEG-XL Decoding libjxl 0.10.1CPU Threads: Allabc60120180240300278.17279.00282.66

srsRAN Project

OpenBenchmarking.orgMbps, More Is BettersrsRAN Project 23.10.1-20240219Test: PUSCH Processor Benchmark, Throughput Threadbac2040608010089.089.289.3MIN: 55.9MIN: 55.9MIN: 55.91. (CXX) g++ options: -march=native -mavx2 -mavx -msse4.1 -mfma -O3 -fno-trapping-math -fno-math-errno -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_1d - Engine: CPUbac2468107.415627.345807.28030MIN: 7.05MIN: 6.98MIN: 6.951. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

srsRAN Project

OpenBenchmarking.orgMbps, More Is BettersrsRAN Project 23.10.1-20240219Test: PUSCH Processor Benchmark, Throughput Totalbac130260390520650578.1578.5578.9MIN: 337.5MIN: 337.4MIN: 337.71. (CXX) g++ options: -march=native -mavx2 -mavx -msse4.1 -mfma -O3 -fno-trapping-math -fno-math-errno -ldl

OpenBenchmarking.orgMbps, More Is BettersrsRAN Project 23.10.1-20240219Test: PDSCH Processor Benchmark, Throughput Totalcab60012001800240030002667.72684.62750.81. (CXX) g++ options: -march=native -mavx2 -mavx -msse4.1 -mfma -O3 -fno-trapping-math -fno-math-errno -ldl

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 1D - Engine: CPUcab2468108.350688.340668.32894MIN: 8.29MIN: 8.28MIN: 8.261. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

Parallel BZIP2 Compression

This test measures the time needed to compress a file (FreeBSD-13.0-RELEASE-amd64-memstick.img) using Parallel BZIP2 compression. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterParallel BZIP2 Compression 1.1.13FreeBSD-13.0-RELEASE-amd64-memstick.img Compressionbca369121512.6212.5912.181. (CXX) g++ options: -O2 -pthread -lbz2 -lpthread

Google Draco

Draco is a library developed by Google for compressing/decompressing 3D geometric meshes and point clouds. This test profile uses some Artec3D PLY models as the sample 3D model input formats for Draco compression/decompression. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterGoogle Draco 1.5.6Model: Church Facadecab170034005100680085007739773676951. (CXX) g++ options: -O3

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 3D - Engine: CPUacb36912159.584129.572959.54774MIN: 9.52MIN: 9.52MIN: 9.491. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

srsRAN Project

OpenBenchmarking.orgMbps, More Is BettersrsRAN Project 23.10.1-20240219Test: PDSCH Processor Benchmark, Throughput Threadcab60120180240300290.3290.5290.71. (CXX) g++ options: -march=native -mavx2 -mavx -msse4.1 -mfma -O3 -fno-trapping-math -fno-math-errno -ldl

WavPack Audio Encoding

This test times how long it takes to encode a sample WAV file to WavPack format with very high quality settings. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterWavPack Audio Encoding 5.7WAV To WavPackcba36912159.0739.0588.934

Google Draco

Draco is a library developed by Google for compressing/decompressing 3D geometric meshes and point clouds. This test profile uses some Artec3D PLY models as the sample 3D model input formats for Draco compression/decompression. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterGoogle Draco 1.5.6Model: Lionacb130026003900520065006254624062151. (CXX) g++ options: -O3

oneDNN

This is a test of the Intel oneDNN as an Intel-optimized library for Deep Neural Networks and making use of its built-in benchdnn functionality. The result is the total perf time reported. Intel oneDNN was formerly known as DNNL (Deep Neural Network Library) and MKL-DNN before being rebranded as part of the Intel oneAPI toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Convolution Batch Shapes Auto - Engine: CPUbac369121510.6410.6310.61MIN: 10.58MIN: 10.57MIN: 10.561. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_3d - Engine: CPUbac369121511.131709.178199.13654MIN: 8.89MIN: 8.85MIN: 8.881. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

64 Results Shown

JPEG-XL libjxl:
  PNG - 80
  JPEG - 80
oneDNN
JPEG-XL libjxl:
  PNG - 90
  JPEG - 90
oneDNN
Chaos Group V-RAY
JPEG-XL libjxl:
  JPEG - 100
  PNG - 100
OpenVINO:
  Face Detection FP16-INT8 - CPU:
    ms
    FPS
  Face Detection FP16 - CPU:
    ms
    FPS
  Person Detection FP16 - CPU:
    ms
    FPS
  Machine Translation EN To DE FP16 - CPU:
    ms
    FPS
  Person Detection FP32 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16-INT8 - CPU:
    ms
    FPS
  Person Vehicle Bike Detection FP16 - CPU:
    ms
    FPS
  Noise Suppression Poconet-Like FP16 - CPU:
    ms
    FPS
  Handwritten English Recognition FP16-INT8 - CPU:
    ms
    FPS
  Person Re-Identification Retail FP16 - CPU:
    ms
    FPS
  Road Segmentation ADAS FP16 - CPU:
    ms
    FPS
  Vehicle Detection FP16-INT8 - CPU:
    ms
    FPS
  Handwritten English Recognition FP16 - CPU:
    ms
    FPS
  Face Detection Retail FP16-INT8 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16-INT8 - CPU:
    ms
    FPS
  Vehicle Detection FP16 - CPU:
    ms
    FPS
  Face Detection Retail FP16 - CPU:
    ms
    FPS
  Weld Porosity Detection FP16 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16-INT8 - CPU:
    ms
    FPS
  Age Gender Recognition Retail 0013 FP16 - CPU:
    ms
    FPS
JPEG-XL Decoding libjxl:
  1
  All
srsRAN Project
oneDNN
srsRAN Project:
  PUSCH Processor Benchmark, Throughput Total
  PDSCH Processor Benchmark, Throughput Total
oneDNN
Parallel BZIP2 Compression
Google Draco
oneDNN
srsRAN Project
WavPack Audio Encoding
Google Draco
oneDNN:
  Convolution Batch Shapes Auto - CPU
  Deconvolution Batch shapes_3d - CPU