new amp ARMv8 Neoverse-N1 testing with a GIGABYTE G242-P36-00 MP32-AR2-00 v01000100 (F31k SCP: 2.10.20220531 BIOS) and ASPEED on Ubuntu 23.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2402068-NE-NEWAMP18865&rdt&gru .
new amp Processor Motherboard Chipset Memory Disk Graphics Monitor Network OS Kernel Compiler File-System Screen Resolution a b c ARMv8 Neoverse-N1 @ 3.00GHz (128 Cores) GIGABYTE G242-P36-00 MP32-AR2-00 v01000100 (F31k SCP: 2.10.20220531 BIOS) Ampere Computing LLC Altra PCI Root Complex A 16 x 32GB DDR4-3200MT/s Samsung M393A4K40DB3-CWE 800GB Micron_7450_MTFDKBA800TFS ASPEED VGA HDMI 2 x Intel I350 Ubuntu 23.10 6.5.0-13-generic (aarch64) GCC 13.2.0 ext4 1920x1080 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=aarch64-linux-gnu --disable-libquadmath --disable-libquadmath-support --disable-werror --enable-bootstrap --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-fix-cortex-a53-843419 --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-nls --enable-objc-gc=auto --enable-plugin --enable-shared --enable-threads=posix --host=aarch64-linux-gnu --program-prefix=aarch64-linux-gnu- --target=aarch64-linux-gnu --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-target-system-zlib=auto -v Processor Details - Scaling Governor: cppc_cpufreq performance (Boost: Disabled) Python Details - Python 3.11.6 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of __user pointer sanitization + spectre_v2: Mitigation of CSV2 BHB + srbds: Not affected + tsx_async_abort: Not affected
new amp onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard compress-lz4: 1 - Compression Speed compress-lz4: 1 - Decompression Speed compress-lz4: 3 - Compression Speed compress-lz4: 3 - Decompression Speed compress-lz4: 9 - Compression Speed compress-lz4: 9 - Decompression Speed llamafile: llava-v1.5-7b-q4 - CPU llamafile: mistral-7b-instruct-v0.2.Q8_0 - CPU llamafile: wizardcoder-python-34b-v1.0.Q6_K - CPU onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard a b c 154.293 178.736 6.09066 7.13777 250.556 258.637 10.9277 22.1724 576.593 701.371 1.12538 1.20414 9.81261 11.0025 131.488 170.121 75.7142 79.4944 24.8599 25.3641 519.83 2815.2 80.97 2492.2 27.59 2511.8 3.31 3.15 1.78 6.47235 5.58525 164.181 140.095 3.98962 3.86227 91.5067 45.0965 1.73248 1.42343 888.584 830.466 101.907 90.885 7.60357 5.87533 13.2062 12.576 40.2226 39.4206 154.899 176.523 6.16283 7.11377 251.252 258.855 11.7545 22.0769 566.725 698.343 1.14758 1.24444 9.82943 10.7484 132 167.736 75.6672 79.5166 24.8398 25.0685 520.41 2827.7 80.95 2493.1 27.68 2511 3.02 2.89 1.74 6.44697 5.65511 162.26 140.568 3.97869 3.8592 85.0699 45.2911 1.76282 1.42955 871.395 803.571 101.733 93.0332 7.57392 5.95823 13.2144 12.5723 40.2552 39.8855 154.703 177.439 6.20055 7.12556 251.457 253.597 11.1091 21.9998 576.227 700.482 1.13122 1.25872 9.80991 10.9854 130.705 170.632 75.6401 79.4851 24.8612 25.4554 521.15 2841.8 80.99 2491.6 27.64 2512 3.31 2.83 1.77 6.45507 5.62585 161.272 140.335 3.9752 3.93918 90.0129 45.4499 1.73356 1.42532 884 794.456 101.936 91.0258 7.64929 5.85706 13.2191 12.5774 40.2202 39.2789 OpenBenchmarking.org
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Parallel a b c 30 60 90 120 150 154.29 154.90 154.70 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Standard a b c 40 80 120 160 200 178.74 176.52 177.44 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel a b c 2 4 6 8 10 6.09066 6.16283 6.20055 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard a b c 2 4 6 8 10 7.13777 7.11377 7.12556 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c 50 100 150 200 250 250.56 251.25 251.46 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard a b c 60 120 180 240 300 258.64 258.86 253.60 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c 3 6 9 12 15 10.93 11.75 11.11 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c 5 10 15 20 25 22.17 22.08 22.00 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c 120 240 360 480 600 576.59 566.73 576.23 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c 150 300 450 600 750 701.37 698.34 700.48 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c 0.2582 0.5164 0.7746 1.0328 1.291 1.12538 1.14758 1.13122 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c 0.2832 0.5664 0.8496 1.1328 1.416 1.20414 1.24444 1.25872 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c 3 6 9 12 15 9.81261 9.82943 9.80991 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c 3 6 9 12 15 11.00 10.75 10.99 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c 30 60 90 120 150 131.49 132.00 130.71 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c 40 80 120 160 200 170.12 167.74 170.63 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c 20 40 60 80 100 75.71 75.67 75.64 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c 20 40 60 80 100 79.49 79.52 79.49 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c 6 12 18 24 30 24.86 24.84 24.86 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c 6 12 18 24 30 25.36 25.07 25.46 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
LZ4 Compression Compression Level: 1 - Compression Speed OpenBenchmarking.org MB/s, More Is Better LZ4 Compression 1.9.4 Compression Level: 1 - Compression Speed a b c 110 220 330 440 550 519.83 520.41 521.15 1. (CC) gcc options: -O3
LZ4 Compression Compression Level: 1 - Decompression Speed OpenBenchmarking.org MB/s, More Is Better LZ4 Compression 1.9.4 Compression Level: 1 - Decompression Speed a b c 600 1200 1800 2400 3000 2815.2 2827.7 2841.8 1. (CC) gcc options: -O3
LZ4 Compression Compression Level: 3 - Compression Speed OpenBenchmarking.org MB/s, More Is Better LZ4 Compression 1.9.4 Compression Level: 3 - Compression Speed a b c 20 40 60 80 100 80.97 80.95 80.99 1. (CC) gcc options: -O3
LZ4 Compression Compression Level: 3 - Decompression Speed OpenBenchmarking.org MB/s, More Is Better LZ4 Compression 1.9.4 Compression Level: 3 - Decompression Speed a b c 500 1000 1500 2000 2500 2492.2 2493.1 2491.6 1. (CC) gcc options: -O3
LZ4 Compression Compression Level: 9 - Compression Speed OpenBenchmarking.org MB/s, More Is Better LZ4 Compression 1.9.4 Compression Level: 9 - Compression Speed a b c 7 14 21 28 35 27.59 27.68 27.64 1. (CC) gcc options: -O3
LZ4 Compression Compression Level: 9 - Decompression Speed OpenBenchmarking.org MB/s, More Is Better LZ4 Compression 1.9.4 Compression Level: 9 - Decompression Speed a b c 500 1000 1500 2000 2500 2511.8 2511.0 2512.0 1. (CC) gcc options: -O3
Llamafile Test: llava-v1.5-7b-q4 - Acceleration: CPU OpenBenchmarking.org Tokens Per Second, More Is Better Llamafile 0.6 Test: llava-v1.5-7b-q4 - Acceleration: CPU a b c 0.7448 1.4896 2.2344 2.9792 3.724 3.31 3.02 3.31
Llamafile Test: mistral-7b-instruct-v0.2.Q8_0 - Acceleration: CPU OpenBenchmarking.org Tokens Per Second, More Is Better Llamafile 0.6 Test: mistral-7b-instruct-v0.2.Q8_0 - Acceleration: CPU a b c 0.7088 1.4176 2.1264 2.8352 3.544 3.15 2.89 2.83
Llamafile Test: wizardcoder-python-34b-v1.0.Q6_K - Acceleration: CPU OpenBenchmarking.org Tokens Per Second, More Is Better Llamafile 0.6 Test: wizardcoder-python-34b-v1.0.Q6_K - Acceleration: CPU a b c 0.4005 0.801 1.2015 1.602 2.0025 1.78 1.74 1.77
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Parallel a b c 2 4 6 8 10 6.47235 6.44697 6.45507 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Standard a b c 1.2724 2.5448 3.8172 5.0896 6.362 5.58525 5.65511 5.62585 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel a b c 40 80 120 160 200 164.18 162.26 161.27 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard a b c 30 60 90 120 150 140.10 140.57 140.34 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c 0.8977 1.7954 2.6931 3.5908 4.4885 3.98962 3.97869 3.97520 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard a b c 0.8863 1.7726 2.6589 3.5452 4.4315 3.86227 3.85920 3.93918 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c 20 40 60 80 100 91.51 85.07 90.01 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c 10 20 30 40 50 45.10 45.29 45.45 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c 0.3966 0.7932 1.1898 1.5864 1.983 1.73248 1.76282 1.73356 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c 0.3216 0.6432 0.9648 1.2864 1.608 1.42343 1.42955 1.42532 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c 200 400 600 800 1000 888.58 871.40 884.00 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c 200 400 600 800 1000 830.47 803.57 794.46 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c 20 40 60 80 100 101.91 101.73 101.94 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c 20 40 60 80 100 90.89 93.03 91.03 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c 2 4 6 8 10 7.60357 7.57392 7.64929 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c 1.3406 2.6812 4.0218 5.3624 6.703 5.87533 5.95823 5.85706 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c 3 6 9 12 15 13.21 13.21 13.22 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c 3 6 9 12 15 12.58 12.57 12.58 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c 9 18 27 36 45 40.22 40.26 40.22 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c 9 18 27 36 45 39.42 39.89 39.28 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
Phoronix Test Suite v10.8.5