onnx gh200 ARMv8 Neoverse-V2 testing with a Quanta Cloud QuantaGrid S74G-2U 1S7GZ9Z0000 S7G MB (CG1) (3A06 BIOS) and ASPEED on Ubuntu 23.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2402042-NE-ONNXGH20009&sor .
onnx gh200 Processor Motherboard Memory Disk Graphics Network OS Kernel Compiler File-System Screen Resolution a b c d ARMv8 Neoverse-V2 @ 3.39GHz (72 Cores) Quanta Cloud QuantaGrid S74G-2U 1S7GZ9Z0000 S7G MB (CG1) (3A06 BIOS) 1 x 480GB DRAM-6400MT/s 960GB SAMSUNG MZ1L2960HCJR-00A07 + 1920GB SAMSUNG MZTL21T9 ASPEED 2 x Mellanox MT2910 + 2 x QLogic FastLinQ QL41000 10/25/40/50GbE Ubuntu 23.10 6.5.0-15-generic (aarch64) GCC 13.2.0 ext4 1920x1200 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=aarch64-linux-gnu --disable-libquadmath --disable-libquadmath-support --disable-werror --enable-bootstrap --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-fix-cortex-a53-843419 --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-nls --enable-objc-gc=auto --enable-plugin --enable-shared --enable-threads=posix --host=aarch64-linux-gnu --program-prefix=aarch64-linux-gnu- --target=aarch64-linux-gnu --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-target-system-zlib=auto -v Processor Details - Scaling Governor: cppc_cpufreq ondemand (Boost: Disabled) Python Details - Python 3.11.6 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of __user pointer sanitization + spectre_v2: Not affected + srbds: Not affected + tsx_async_abort: Not affected
onnx gh200 onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: yolov4 - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: T5 Encoder - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: super-resolution-10 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard a b c d 8.36597 119.530 11.0687 90.3501 75.2417 13.2889 367.963 2.71650 548.965 1.82009 1112.69 0.897753 1.47621 677.751 1.48485 673.470 241.428 4.14119 272.681 3.66668 43.3703 23.0604 149.545 6.68539 8.30820 120.422 11.1851 89.4041 74.1639 13.4822 374.207 2.67306 532.261 1.87709 1125.55 0.887622 1.47745 676.874 1.49458 669.125 241.101 4.14668 277.494 3.60302 42.7739 23.3815 148.714 6.72220 8.6564 115.518 11.3685 87.9548 76.2605 13.1099 374.202 2.66641 539.31 1.85241 1164.06 0.858087 1.52538 655.567 1.4664 681.935 246.944 4.04811 290.32 3.44312 41.6917 23.9848 148.299 6.74173 8.34625 119.81 11.4108 87.628 78.5892 12.7215 344.562 2.89589 536.915 1.86068 1154.69 0.865053 1.48956 671.335 1.48493 673.423 245.086 4.07887 284.01 3.51969 42.8567 23.3328 149.676 6.67817 OpenBenchmarking.org
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel c a d b 2 4 6 8 10 SE +/- 0.02669, N = 3 SE +/- 0.05551, N = 13 8.65640 8.36597 8.34625 8.30820 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel c a d b 30 60 90 120 150 SE +/- 0.38, N = 3 SE +/- 0.79, N = 13 115.52 119.53 119.81 120.42 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard d c b a 3 6 9 12 15 SE +/- 0.07, N = 3 SE +/- 0.10, N = 3 11.41 11.37 11.19 11.07 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard d c b a 20 40 60 80 100 SE +/- 0.59, N = 3 SE +/- 0.78, N = 3 87.63 87.95 89.40 90.35 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel d c a b 20 40 60 80 100 SE +/- 0.60, N = 3 SE +/- 0.58, N = 3 78.59 76.26 75.24 74.16 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel d c a b 3 6 9 12 15 SE +/- 0.10, N = 3 SE +/- 0.10, N = 3 12.72 13.11 13.29 13.48 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard b c a d 80 160 240 320 400 SE +/- 4.76, N = 15 SE +/- 4.18, N = 15 374.21 374.20 367.96 344.56 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard c b a d 0.6516 1.3032 1.9548 2.6064 3.258 SE +/- 0.03607, N = 15 SE +/- 0.03168, N = 15 2.66641 2.67306 2.71650 2.89589 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a c d b 120 240 360 480 600 SE +/- 3.89, N = 3 SE +/- 2.89, N = 3 548.97 539.31 536.92 532.26 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a c d b 0.4223 0.8446 1.2669 1.6892 2.1115 SE +/- 0.01302, N = 3 SE +/- 0.01025, N = 3 1.82009 1.85241 1.86068 1.87709 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard c d b a 300 600 900 1200 1500 SE +/- 10.31, N = 3 SE +/- 6.25, N = 3 1164.06 1154.69 1125.55 1112.69 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard c d b a 0.202 0.404 0.606 0.808 1.01 SE +/- 0.008022, N = 3 SE +/- 0.005008, N = 3 0.858087 0.865053 0.887622 0.897753 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel c d b a 0.3432 0.6864 1.0296 1.3728 1.716 SE +/- 0.00765, N = 3 SE +/- 0.01346, N = 7 1.52538 1.48956 1.47745 1.47621 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel c d b a 150 300 450 600 750 SE +/- 3.51, N = 3 SE +/- 6.29, N = 7 655.57 671.34 676.87 677.75 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard b d a c 0.3363 0.6726 1.0089 1.3452 1.6815 SE +/- 0.00907, N = 3 SE +/- 0.00409, N = 3 1.49458 1.48493 1.48485 1.46640 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard b d a c 150 300 450 600 750 SE +/- 4.04, N = 3 SE +/- 1.86, N = 3 669.13 673.42 673.47 681.94 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel c d a b 50 100 150 200 250 SE +/- 1.89, N = 3 SE +/- 1.85, N = 3 246.94 245.09 241.43 241.10 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel c d a b 0.933 1.866 2.799 3.732 4.665 SE +/- 0.03271, N = 3 SE +/- 0.03166, N = 3 4.04811 4.07887 4.14119 4.14668 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard c d b a 60 120 180 240 300 SE +/- 3.00, N = 3 SE +/- 2.85, N = 3 290.32 284.01 277.49 272.68 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard c d b a 0.825 1.65 2.475 3.3 4.125 SE +/- 0.03859, N = 3 SE +/- 0.03802, N = 3 3.44312 3.51969 3.60302 3.66668 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel a d b c 10 20 30 40 50 SE +/- 0.40, N = 3 SE +/- 0.37, N = 3 43.37 42.86 42.77 41.69 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel a d b c 6 12 18 24 30 SE +/- 0.21, N = 3 SE +/- 0.20, N = 3 23.06 23.33 23.38 23.98 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard d a b c 30 60 90 120 150 SE +/- 0.17, N = 3 SE +/- 0.57, N = 3 149.68 149.55 148.71 148.30 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard d a b c 2 4 6 8 10 SE +/- 0.00749, N = 3 SE +/- 0.02580, N = 3 6.67817 6.68539 6.72220 6.74173 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
Phoronix Test Suite v10.8.5