onnx new AMD Ryzen 7 7840HS testing with a Framework Laptop 16 (AMD Ryzen 7040 ) FRANMZCP07 (03.01 BIOS) and AMD Radeon RX 7700S/7600/7600S/7600M XT/PRO W7600 512MB on Ubuntu 23.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2402031-NE-ONNXNEW3518&gru&sro .
onnx new Processor Motherboard Chipset Memory Disk Graphics Audio Network OS Kernel Desktop Display Server OpenGL Compiler File-System Screen Resolution a b c AMD Ryzen 7 7840HS @ 5.29GHz (8 Cores / 16 Threads) Framework Laptop 16 (AMD Ryzen 7040 ) FRANMZCP07 (03.01 BIOS) AMD Device 14e8 2 x 8GB DRAM-5600MT/s A-DATA AD5S56008G-B 512GB Western Digital PC SN810 SDCPNRY-512G AMD Radeon RX 7700S/7600/7600S/7600M XT/PRO W7600 512MB (2208/1124MHz) AMD Navi 31 HDMI/DP MEDIATEK MT7922 802.11ax PCI Ubuntu 23.10 6.7.0-060700-generic (x86_64) GNOME Shell 45.2 X Server 1.21.1.7 + Wayland 4.6 Mesa 24.1~git2401210600.c3a64f~oibaf~m (git-c3a64f8 2024-01-21 mantic-oibaf-ppa) (LLVM 16.0.6 DRM 3.56) GCC 13.2.0 ext4 2560x1600 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: amd-pstate-epp powersave (EPP: performance) - Platform Profile: balanced - CPU Microcode: 0xa704103 - ACPI Profile: balanced Python Details - Python 3.11.6 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Vulnerable: Safe RET no microcode + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
onnx new onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard a b c 99.6416 117.223 5.90248 8.74175 131.995 141.301 8.34425 8.02122 442.909 482.954 0.835404 1.44855 18.9736 18.4726 213.277 231.526 63.1791 100.634 35.9284 47.6961 10.0323 8.52586 169.418 114.391 7.57486 7.07527 119.841 124.666 2.25633 2.06948 1197.02 690.342 52.7033 54.1322 4.68787 4.31816 15.8273 9.93546 27.8314 20.9638 99.3045 106.356 5.85229 8.75588 131.482 141.488 8.34469 8.03961 440.312 471.107 0.797356 1.395417 18.6701 24.7488 213.157 225.297 62.9732 87.1859 35.8925 40.2638 10.0664 9.39668 170.948 114.208 7.60445 7.06618 119.839 124.381 2.26957 2.12402 1254.40 734.445 53.5693 42.8754 4.69052 4.43760 15.8802 12.10370 27.8592 25.1965 99.0849 115.973 6.04911 5.58049 130.228 140.225 8.6831 14.3719 432.131 479.712 0.89207 1.45352 19.0318 18.5126 215.859 223.595 63.2838 61.3254 35.6086 36.2463 10.0886 8.61681 165.311 179.193 7.67771 7.12971 115.164 69.5762 2.31263 2.08341 1120.99 687.981 52.542 54.0153 4.63202 4.47122 15.8011 16.3042 28.0813 27.5866 OpenBenchmarking.org
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Parallel a b c 20 40 60 80 100 SE +/- 0.08, N = 3 99.64 99.30 99.08 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Standard a b c 30 60 90 120 150 SE +/- 0.56, N = 3 117.22 106.36 115.97 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel a b c 2 4 6 8 10 SE +/- 0.05453, N = 6 5.90248 5.85229 6.04911 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard a b c 2 4 6 8 10 SE +/- 0.02197, N = 3 8.74175 8.75588 5.58049 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c 30 60 90 120 150 SE +/- 0.42, N = 3 132.00 131.48 130.23 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard a b c 30 60 90 120 150 SE +/- 0.57, N = 3 141.30 141.49 140.23 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c 2 4 6 8 10 SE +/- 0.03581, N = 3 8.34425 8.34469 8.68310 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c 4 8 12 16 20 SE +/- 0.01613, N = 3 8.02122 8.03961 14.37190 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c 100 200 300 400 500 SE +/- 2.22, N = 3 442.91 440.31 432.13 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c 100 200 300 400 500 SE +/- 4.33, N = 15 482.95 471.11 479.71 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c 0.2007 0.4014 0.6021 0.8028 1.0035 SE +/- 0.008173, N = 3 0.835404 0.797356 0.892070 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c 0.327 0.654 0.981 1.308 1.635 SE +/- 0.051929, N = 12 1.448550 1.395417 1.453520 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c 5 10 15 20 25 SE +/- 0.17, N = 3 18.97 18.67 19.03 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c 6 12 18 24 30 SE +/- 1.56, N = 15 18.47 24.75 18.51 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c 50 100 150 200 250 SE +/- 0.50, N = 3 213.28 213.16 215.86 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c 50 100 150 200 250 SE +/- 0.80, N = 3 231.53 225.30 223.60 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c 14 28 42 56 70 SE +/- 0.38, N = 3 63.18 62.97 63.28 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c 20 40 60 80 100 SE +/- 4.92, N = 15 100.63 87.19 61.33 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c 8 16 24 32 40 SE +/- 0.00, N = 3 35.93 35.89 35.61 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c 11 22 33 44 55 SE +/- 1.35, N = 15 47.70 40.26 36.25 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Parallel a b c 3 6 9 12 15 SE +/- 0.01, N = 3 10.03 10.07 10.09 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Standard a b c 3 6 9 12 15 SE +/- 0.04985, N = 3 8.52586 9.39668 8.61681 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel a b c 40 80 120 160 200 SE +/- 1.65, N = 6 169.42 170.95 165.31 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard a b c 40 80 120 160 200 SE +/- 0.29, N = 3 114.39 114.21 179.19 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c 2 4 6 8 10 SE +/- 0.02452, N = 3 7.57486 7.60445 7.67771 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard a b c 2 4 6 8 10 SE +/- 0.02856, N = 3 7.07527 7.06618 7.12971 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c 30 60 90 120 150 SE +/- 0.51, N = 3 119.84 119.84 115.16 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c 30 60 90 120 150 SE +/- 0.25, N = 3 124.67 124.38 69.58 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c 0.5203 1.0406 1.5609 2.0812 2.6015 SE +/- 0.01138, N = 3 2.25633 2.26957 2.31263 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c 0.4779 0.9558 1.4337 1.9116 2.3895 SE +/- 0.01981, N = 15 2.06948 2.12402 2.08341 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c 300 600 900 1200 1500 SE +/- 12.82, N = 3 1197.02 1254.40 1120.99 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c 160 320 480 640 800 SE +/- 43.53, N = 12 690.34 734.45 687.98 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c 12 24 36 48 60 SE +/- 0.50, N = 3 52.70 53.57 52.54 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c 12 24 36 48 60 SE +/- 2.80, N = 15 54.13 42.88 54.02 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c 1.0554 2.1108 3.1662 4.2216 5.277 SE +/- 0.01086, N = 3 4.68787 4.69052 4.63202 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c 1.006 2.012 3.018 4.024 5.03 SE +/- 0.01579, N = 3 4.31816 4.43760 4.47122 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c 4 8 12 16 20 SE +/- 0.10, N = 3 15.83 15.88 15.80 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c 4 8 12 16 20 SE +/- 0.80380, N = 15 9.93546 12.10370 16.30420 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c 7 14 21 28 35 SE +/- 0.00, N = 3 27.83 27.86 28.08 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c 6 12 18 24 30 SE +/- 0.78, N = 15 20.96 25.20 27.59 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
Phoronix Test Suite v10.8.5