onnx new AMD Ryzen 7 7840HS testing with a Framework Laptop 16 (AMD Ryzen 7040 ) FRANMZCP07 (03.01 BIOS) and AMD Radeon RX 7700S/7600/7600S/7600M XT/PRO W7600 512MB on Ubuntu 23.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2402031-NE-ONNXNEW3518&grs&rdt .
onnx new Processor Motherboard Chipset Memory Disk Graphics Audio Network OS Kernel Desktop Display Server OpenGL Compiler File-System Screen Resolution a b c AMD Ryzen 7 7840HS @ 5.29GHz (8 Cores / 16 Threads) Framework Laptop 16 (AMD Ryzen 7040 ) FRANMZCP07 (03.01 BIOS) AMD Device 14e8 2 x 8GB DRAM-5600MT/s A-DATA AD5S56008G-B 512GB Western Digital PC SN810 SDCPNRY-512G AMD Radeon RX 7700S/7600/7600S/7600M XT/PRO W7600 512MB (2208/1124MHz) AMD Navi 31 HDMI/DP MEDIATEK MT7922 802.11ax PCI Ubuntu 23.10 6.7.0-060700-generic (x86_64) GNOME Shell 45.2 X Server 1.21.1.7 + Wayland 4.6 Mesa 24.1~git2401210600.c3a64f~oibaf~m (git-c3a64f8 2024-01-21 mantic-oibaf-ppa) (LLVM 16.0.6 DRM 3.56) GCC 13.2.0 ext4 2560x1600 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: amd-pstate-epp powersave (EPP: performance) - Platform Profile: balanced - CPU Microcode: 0xa704103 - ACPI Profile: balanced Python Details - Python 3.11.6 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Vulnerable: Safe RET no microcode + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
onnx new onnx: bertsquad-12 - CPU - Standard onnx: yolov4 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Parallel onnx: T5 Encoder - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: GPT-2 - CPU - Parallel onnx: super-resolution-10 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: super-resolution-10 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: GPT-2 - CPU - Parallel a b c 8.02122 8.74175 0.835404 117.223 8.34425 231.526 5.90248 482.954 442.909 18.9736 131.995 213.277 141.301 35.9284 99.6416 63.1791 20.9638 47.6961 27.8314 9.93546 100.634 15.8273 4.31816 4.68787 54.1322 18.4726 52.7033 690.342 1.44855 1197.02 2.06948 2.25633 124.666 119.841 7.07527 7.57486 114.391 169.418 8.52586 10.0323 8.03961 8.75588 0.797356 106.356 8.34469 225.297 5.85229 471.107 440.312 18.6701 131.482 213.157 141.488 35.8925 99.3045 62.9732 25.1965 40.2638 27.8592 12.10370 87.1859 15.8802 4.43760 4.69052 42.8754 24.7488 53.5693 734.445 1.395417 1254.40 2.12402 2.26957 124.381 119.839 7.06618 7.60445 114.208 170.948 9.39668 10.0664 14.3719 5.58049 0.89207 115.973 8.6831 223.595 6.04911 479.712 432.131 19.0318 130.228 215.859 140.225 35.6086 99.0849 63.2838 27.5866 36.2463 28.0813 16.3042 61.3254 15.8011 4.47122 4.63202 54.0153 18.5126 52.542 687.981 1.45352 1120.99 2.08341 2.31263 69.5762 115.164 7.12971 7.67771 179.193 165.311 8.61681 10.0886 OpenBenchmarking.org
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c 4 8 12 16 20 SE +/- 0.01613, N = 3 8.02122 8.03961 14.37190 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard a b c 2 4 6 8 10 SE +/- 0.02197, N = 3 8.74175 8.75588 5.58049 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c 0.2007 0.4014 0.6021 0.8028 1.0035 SE +/- 0.008173, N = 3 0.835404 0.797356 0.892070 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Standard a b c 30 60 90 120 150 SE +/- 0.56, N = 3 117.22 106.36 115.97 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c 2 4 6 8 10 SE +/- 0.03581, N = 3 8.34425 8.34469 8.68310 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c 50 100 150 200 250 SE +/- 0.80, N = 3 231.53 225.30 223.60 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel a b c 2 4 6 8 10 SE +/- 0.05453, N = 6 5.90248 5.85229 6.04911 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c 100 200 300 400 500 SE +/- 4.33, N = 15 482.95 471.11 479.71 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c 100 200 300 400 500 SE +/- 2.22, N = 3 442.91 440.31 432.13 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c 5 10 15 20 25 SE +/- 0.17, N = 3 18.97 18.67 19.03 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c 30 60 90 120 150 SE +/- 0.42, N = 3 132.00 131.48 130.23 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c 50 100 150 200 250 SE +/- 0.50, N = 3 213.28 213.16 215.86 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard a b c 30 60 90 120 150 SE +/- 0.57, N = 3 141.30 141.49 140.23 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c 8 16 24 32 40 SE +/- 0.00, N = 3 35.93 35.89 35.61 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Parallel a b c 20 40 60 80 100 SE +/- 0.08, N = 3 99.64 99.30 99.08 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c 14 28 42 56 70 SE +/- 0.38, N = 3 63.18 62.97 63.28 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c 6 12 18 24 30 SE +/- 0.78, N = 15 20.96 25.20 27.59 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c 11 22 33 44 55 SE +/- 1.35, N = 15 47.70 40.26 36.25 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c 7 14 21 28 35 SE +/- 0.00, N = 3 27.83 27.86 28.08 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c 4 8 12 16 20 SE +/- 0.80380, N = 15 9.93546 12.10370 16.30420 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c 20 40 60 80 100 SE +/- 4.92, N = 15 100.63 87.19 61.33 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c 4 8 12 16 20 SE +/- 0.10, N = 3 15.83 15.88 15.80 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c 1.006 2.012 3.018 4.024 5.03 SE +/- 0.01579, N = 3 4.31816 4.43760 4.47122 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c 1.0554 2.1108 3.1662 4.2216 5.277 SE +/- 0.01086, N = 3 4.68787 4.69052 4.63202 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c 12 24 36 48 60 SE +/- 2.80, N = 15 54.13 42.88 54.02 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c 6 12 18 24 30 SE +/- 1.56, N = 15 18.47 24.75 18.51 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c 12 24 36 48 60 SE +/- 0.50, N = 3 52.70 53.57 52.54 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c 160 320 480 640 800 SE +/- 43.53, N = 12 690.34 734.45 687.98 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c 0.327 0.654 0.981 1.308 1.635 SE +/- 0.051929, N = 12 1.448550 1.395417 1.453520 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c 300 600 900 1200 1500 SE +/- 12.82, N = 3 1197.02 1254.40 1120.99 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c 0.4779 0.9558 1.4337 1.9116 2.3895 SE +/- 0.01981, N = 15 2.06948 2.12402 2.08341 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c 0.5203 1.0406 1.5609 2.0812 2.6015 SE +/- 0.01138, N = 3 2.25633 2.26957 2.31263 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c 30 60 90 120 150 SE +/- 0.25, N = 3 124.67 124.38 69.58 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c 30 60 90 120 150 SE +/- 0.51, N = 3 119.84 119.84 115.16 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard a b c 2 4 6 8 10 SE +/- 0.02856, N = 3 7.07527 7.06618 7.12971 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c 2 4 6 8 10 SE +/- 0.02452, N = 3 7.57486 7.60445 7.67771 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard a b c 40 80 120 160 200 SE +/- 0.29, N = 3 114.39 114.21 179.19 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel a b c 40 80 120 160 200 SE +/- 1.65, N = 6 169.42 170.95 165.31 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Standard a b c 3 6 9 12 15 SE +/- 0.04985, N = 3 8.52586 9.39668 8.61681 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Parallel a b c 3 6 9 12 15 SE +/- 0.01, N = 3 10.03 10.07 10.09 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
Phoronix Test Suite v10.8.5