AMD EPYC 8534P
AMD EPYC 8534P 64-Core testing with a AMD Cinnabar (RCB1009C BIOS) and ASPEED on Ubuntu 23.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2401286-NE-AMDEPYC8520&grs&sro.
Llama.cpp
Model: llama-2-7b.Q4_0.gguf
Speedb
Test: Random Read
SVT-AV1
Encoder Mode: Preset 8 - Input: Bosphorus 1080p
SVT-AV1
Encoder Mode: Preset 4 - Input: Bosphorus 1080p
PyTorch
Device: CPU - Batch Size: 512 - Model: ResNet-152
Speedb
Test: Update Random
PyTorch
Device: CPU - Batch Size: 1 - Model: ResNet-152
PyTorch
Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l
PyTorch
Device: CPU - Batch Size: 512 - Model: ResNet-50
SVT-AV1
Encoder Mode: Preset 13 - Input: Bosphorus 4K
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream
SVT-AV1
Encoder Mode: Preset 8 - Input: Bosphorus 4K
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream
PyTorch
Device: CPU - Batch Size: 16 - Model: ResNet-50
SVT-AV1
Encoder Mode: Preset 4 - Input: Bosphorus 4K
PyTorch
Device: CPU - Batch Size: 1 - Model: ResNet-50
Speedb
Test: Read While Writing
TensorFlow
Device: CPU - Batch Size: 1 - Model: ResNet-50
PyTorch
Device: CPU - Batch Size: 16 - Model: ResNet-152
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering - Scenario: Synchronous Single-Stream
Llamafile
Test: wizardcoder-python-34b-v1.0.Q6_K - Acceleration: CPU
SVT-AV1
Encoder Mode: Preset 13 - Input: Bosphorus 1080p
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream
SVT-AV1
Encoder Mode: Preset 12 - Input: Bosphorus 1080p
Llama.cpp
Model: llama-2-13b.Q4_0.gguf
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream
SVT-AV1
Encoder Mode: Preset 12 - Input: Bosphorus 4K
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream
Y-Cruncher
Pi Digits To Calculate: 500M
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Quicksilver
Input: CORAL2 P2
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Quicksilver
Input: CTS2
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Stream
Llamafile
Test: llava-v1.5-7b-q4 - Acceleration: CPU
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream
PyTorch
Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l
PyTorch
Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_l
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream
Y-Cruncher
Pi Digits To Calculate: 1B
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream
Speedb
Test: Read Random Write Random
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream
Llama.cpp
Model: llama-2-70b-chat.Q5_0.gguf
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Quicksilver
Input: CORAL2 P1
Llamafile
Test: mistral-7b-instruct-v0.2.Q8_0 - Acceleration: CPU
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering - Scenario: Asynchronous Multi-Stream
TensorFlow
Device: CPU - Batch Size: 512 - Model: ResNet-50
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream
TensorFlow
Device: CPU - Batch Size: 16 - Model: ResNet-50
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream
Phoronix Test Suite v10.8.5