RTX 4070 SUPER

Intel Core i9-13900K testing with a ASUS TUF GAMING Z790-PRO WIFI (1401 BIOS) and ASUS NVIDIA GeForce RTX 4070 SUPER 12GB on EndeavourOS rolling via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2401252-NE-RTX4070SU41&grt.

RTX 4070 SUPERProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLOpenCLCompilerFile-SystemScreen ResolutionNVIDIA RTX 4070 SUPERRTX 4070 SUPERIntel Core i9-13900K @ 5.50GHz (24 Cores / 32 Threads)ASUS TUF GAMING Z790-PRO WIFI (1401 BIOS)Intel Device 7a2732GB4001GB Seagate ZP4000GP304001ASUS NVIDIA GeForce RTX 4070 SUPER 12GBRealtek ALC1220ARZOPAIntel I226-V + Intel Device 7a70EndeavourOS rolling6.7.1-arch1-1 (x86_64)KDE Plasma 5.27.10X Server 1.21.1.11NVIDIA 550.40.074.6.0OpenCL 3.0 CUDA 12.4.74GCC 13.2.1 20230801ext41920x1080OpenBenchmarking.orgKernel Details- Transparent Huge Pages: alwaysCompiler Details- NVIDIA RTX 4070 SUPER: --disable-libssp --disable-libstdcxx-pch --disable-werror --enable-__cxa_atexit --enable-bootstrap --enable-cet=auto --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-default-ssp --enable-gnu-indirect-function --enable-gnu-unique-object --enable-languages=ada,c,c++,d,fortran,go,lto,objc,obj-c++ --enable-libstdcxx-backtrace --enable-link-serialization=1 --enable-lto --enable-multilib --enable-plugin --enable-shared --enable-threads=posix --mandir=/usr/share/man --with-build-config=bootstrap-lto --with-linker-hash-style=gnu Processor Details- Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0x11d Graphics Details- NVIDIA RTX 4070 SUPER: BAR1 / Visible vRAM Size: 16384 MiB - vBIOS Version: 95.04.69.00.c1 Security Details- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Not affected + tsx_async_abort: Not affected Python Details- RTX 4070 SUPER: Python 3.11.6

RTX 4070 SUPERopencl-benchmark: FP64 Computeopencl-benchmark: FP32 Computeopencl-benchmark: INT64 Computeopencl-benchmark: INT32 Computeopencl-benchmark: INT16 Computeopencl-benchmark: INT8 Computeopencl-benchmark: Memory Bandwidth Coalesced Readopencl-benchmark: Memory Bandwidth Coalesced Writepytorch: NVIDIA CUDA GPU - 1 - ResNet-152pytorch: NVIDIA CUDA GPU - 16 - ResNet-50pytorch: NVIDIA CUDA GPU - 64 - ResNet-50pytorch: NVIDIA CUDA GPU - 32 - ResNet-152pytorch: NVIDIA CUDA GPU - 512 - ResNet-50pytorch: NVIDIA CUDA GPU - 256 - ResNet-152pytorch: NVIDIA CUDA GPU - 1 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 32 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 256 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 512 - Efficientnet_v2_lNVIDIA RTX 4070 SUPERRTX 4070 SUPER0.62138.5944.21419.88917.17014.307464.86455.01201.94509.45507.45195.39504.27194.58106.37102.60103.17103.57OpenBenchmarking.org

ProjectPhysX OpenCL-Benchmark

Operation: FP64 Compute

OpenBenchmarking.orgTFLOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: FP64 ComputeNVIDIA RTX 4070 SUPER0.13970.27940.41910.55880.6985SE +/- 0.000, N = 30.6211. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

ProjectPhysX OpenCL-Benchmark

Operation: FP32 Compute

OpenBenchmarking.orgTFLOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: FP32 ComputeNVIDIA RTX 4070 SUPER918273645SE +/- 0.03, N = 338.591. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

ProjectPhysX OpenCL-Benchmark

Operation: INT64 Compute

OpenBenchmarking.orgTIOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: INT64 ComputeNVIDIA RTX 4070 SUPER0.94821.89642.84463.79284.741SE +/- 0.015, N = 34.2141. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

ProjectPhysX OpenCL-Benchmark

Operation: INT32 Compute

OpenBenchmarking.orgTIOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: INT32 ComputeNVIDIA RTX 4070 SUPER510152025SE +/- 0.00, N = 319.891. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

ProjectPhysX OpenCL-Benchmark

Operation: INT16 Compute

OpenBenchmarking.orgTIOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: INT16 ComputeNVIDIA RTX 4070 SUPER48121620SE +/- 0.00, N = 317.171. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

ProjectPhysX OpenCL-Benchmark

Operation: INT8 Compute

OpenBenchmarking.orgTIOPs/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: INT8 ComputeNVIDIA RTX 4070 SUPER48121620SE +/- 0.05, N = 314.311. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

ProjectPhysX OpenCL-Benchmark

Operation: Memory Bandwidth Coalesced Read

OpenBenchmarking.orgGB/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: Memory Bandwidth Coalesced ReadNVIDIA RTX 4070 SUPER100200300400500SE +/- 0.01, N = 3464.861. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

ProjectPhysX OpenCL-Benchmark

Operation: Memory Bandwidth Coalesced Write

OpenBenchmarking.orgGB/s, More Is BetterProjectPhysX OpenCL-Benchmark 1.2Operation: Memory Bandwidth Coalesced WriteNVIDIA RTX 4070 SUPER100200300400500SE +/- 0.14, N = 3455.011. (CXX) g++ options: -std=c++17 -pthread -lOpenCL

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-152RTX 4070 SUPER4080120160200201.94MIN: 183.53 / MAX: 206.5

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-50RTX 4070 SUPER110220330440550509.45MIN: 430.1 / MAX: 516.48

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-50RTX 4070 SUPER110220330440550SE +/- 0.92, N = 3507.45MIN: 423.41 / MAX: 512.88

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-152RTX 4070 SUPER4080120160200195.39MIN: 183.94 / MAX: 198.7

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-50RTX 4070 SUPER110220330440550SE +/- 4.43, N = 2504.27MIN: 418.22 / MAX: 512.44

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-152RTX 4070 SUPER4080120160200SE +/- 1.14, N = 2194.58MIN: 183.74 / MAX: 198.52

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: Efficientnet_v2_lRTX 4070 SUPER20406080100106.37MIN: 97.91 / MAX: 108.16

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: Efficientnet_v2_lRTX 4070 SUPER20406080100102.60MIN: 94.84 / MAX: 104.25

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: Efficientnet_v2_lRTX 4070 SUPER20406080100103.17MIN: 95.79 / MAX: 105.15

PyTorch

Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: Efficientnet_v2_lRTX 4070 SUPER20406080100103.57MIN: 95.95 / MAX: 105.54


Phoronix Test Suite v10.8.5