dghhg

AMD Ryzen Threadripper 3990X 64-Core testing with a Gigabyte TRX40 AORUS PRO WIFI (F6 BIOS) and AMD Radeon RX 5700 8GB on Ubuntu 23.10 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2401086-PTS-DGHHG38612&grs&rdt.

dghhgProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLCompilerFile-SystemScreen ResolutionabcdAMD Ryzen Threadripper 3990X 64-Core @ 2.90GHz (64 Cores / 128 Threads)Gigabyte TRX40 AORUS PRO WIFI (F6 BIOS)AMD Starship/Matisse128GBSamsung SSD 970 EVO Plus 500GBAMD Radeon RX 5700 8GB (1750/875MHz)AMD Navi 10 HDMI AudioDELL P2415QIntel I211 + Intel Wi-Fi 6 AX200Ubuntu 23.106.5.0-14-generic (x86_64)GNOME Shell 45.0X Server + Wayland4.6 Mesa 23.2.1-1ubuntu3 (LLVM 15.0.7 DRM 3.54)GCC 13.2.0ext43840x2160OpenBenchmarking.orgKernel Details- Transparent Huge Pages: madviseCompiler Details- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details- Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0x830107aPython Details- Python 3.11.6Security Details- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_rstack_overflow: Mitigation of safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

dghhgpytorch: CPU - 512 - ResNet-50pytorch: CPU - 256 - ResNet-50pytorch: CPU - 1 - ResNet-50pytorch: CPU - 16 - Efficientnet_v2_lpytorch: CPU - 64 - ResNet-50pytorch: CPU - 16 - ResNet-50pytorch: CPU - 32 - ResNet-50pytorch: CPU - 64 - ResNet-152pytorch: CPU - 512 - ResNet-152speedb: Read While Writingpytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 512 - Efficientnet_v2_lpytorch: CPU - 32 - ResNet-152pytorch: CPU - 1 - ResNet-152pytorch: CPU - 256 - ResNet-152pytorch: CPU - 16 - ResNet-152tensorflow: CPU - 16 - ResNet-50tensorflow: CPU - 16 - AlexNetpytorch: CPU - 256 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_ltensorflow: CPU - 16 - GoogLeNetpytorch: CPU - 1 - Efficientnet_v2_lquicksilver: CORAL2 P1speedb: Read Rand Write Randtensorflow: CPU - 1 - AlexNettensorflow: CPU - 1 - ResNet-50speedb: Update Randy-cruncher: 1Bspeedb: Rand Readquicksilver: CTS2tensorflow: CPU - 1 - VGG-16y-cruncher: 5Btensorflow: CPU - 1 - GoogLeNetquicksilver: CORAL2 P2y-cruncher: 500My-cruncher: 10Btensorflow: CPU - 16 - VGG-16abcd17.7217.6421.512.9017.6917.3917.377.096.98128122922.952.917.038.586.886.969.7153.792.922.9430.34.342565000021939334.915.0225996219.007183616073207400001.84111.0648.69246100009.529238.5603.6416.4717.2720.543.0317.2617.7317.856.846.88132567472.893.006.928.366.827.049.5454.832.922.9330.534.312580000021827494.895.0325849419.11184129582208000001.83110.6648.7246000009.549238.2263.6416.9016.5321.422.9317.4417.0317.246.917.06130420852.892.907.118.486.967.049.7353.822.872.9630.284.362554000021948444.935.0225842019.126183899682206800001.83110.8588.72245400009.532238.4683.6417.0717.3820.792.9516.9417.4817.906.996.82129178582.992.917.018.386.996.879.6654.292.882.9130.674.342574000022020684.894.9925816819.08183061936207700001.84110.6178.69245500009.542238.5683.64OpenBenchmarking.org

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: ResNet-50abcd4812162017.7216.4716.9017.07MIN: 17.17 / MAX: 18.5MIN: 15.78 / MAX: 17.3MIN: 16.19 / MAX: 17.59MIN: 16.08 / MAX: 17.92

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-50abcd4812162017.6417.2716.5317.38MIN: 16.6 / MAX: 18.41MIN: 16.5 / MAX: 17.89MIN: 15.99 / MAX: 17.32MIN: 16.76 / MAX: 18

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-50abcd51015202521.5120.5421.4220.79MIN: 20.69 / MAX: 22.56MIN: 19.65 / MAX: 21.6MIN: 20.69 / MAX: 22.59MIN: 19.68 / MAX: 21.6

PyTorch

Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_labcd0.68181.36362.04542.72723.4092.903.032.932.95MIN: 2.8 / MAX: 3.01MIN: 2.92 / MAX: 3.15MIN: 2.83 / MAX: 3.05MIN: 2.85 / MAX: 3.06

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: ResNet-50abcd4812162017.6917.2617.4416.94MIN: 16.96 / MAX: 18.46MIN: 16.19 / MAX: 17.95MIN: 15.61 / MAX: 18.15MIN: 16.24 / MAX: 17.77

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-50abcd4812162017.3917.7317.0317.48MIN: 16.36 / MAX: 18.06MIN: 17.04 / MAX: 18.52MIN: 16.02 / MAX: 17.78MIN: 16.71 / MAX: 18.01

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: ResNet-50abcd4812162017.3717.8517.2417.90MIN: 16.47 / MAX: 17.93MIN: 17.23 / MAX: 18.44MIN: 16.41 / MAX: 17.86MIN: 17.25 / MAX: 18.79

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: ResNet-152abcd2468107.096.846.916.99MIN: 6.94 / MAX: 7.22MIN: 6.7 / MAX: 6.97MIN: 6.75 / MAX: 7.03MIN: 6.81 / MAX: 7.11

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: ResNet-152abcd2468106.986.887.066.82MIN: 6.83 / MAX: 7.16MIN: 6.75 / MAX: 7.02MIN: 6.92 / MAX: 7.17MIN: 6.57 / MAX: 7

Speedb

Test: Read While Writing

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Read While Writingabcd3M6M9M12M15M128122921325674713042085129178581. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

PyTorch

Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_labcd0.67281.34562.01842.69123.3642.952.892.892.99MIN: 2.77 / MAX: 3.07MIN: 2.8 / MAX: 3MIN: 2.75 / MAX: 3.02MIN: 2.88 / MAX: 3.07

PyTorch

Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_labcd0.6751.352.0252.73.3752.913.002.902.91MIN: 2.81 / MAX: 3.01MIN: 2.91 / MAX: 3.1MIN: 2.77 / MAX: 3.01MIN: 2.8 / MAX: 3.01

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: ResNet-152abcd2468107.036.927.117.01MIN: 6.9 / MAX: 7.16MIN: 6.79 / MAX: 7.07MIN: 6.98 / MAX: 7.26MIN: 6.82 / MAX: 7.14

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-152abcd2468108.588.368.488.38MIN: 8.38 / MAX: 8.76MIN: 8.21 / MAX: 8.57MIN: 8.26 / MAX: 8.67MIN: 8.19 / MAX: 8.58

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-152abcd2468106.886.826.966.99MIN: 6.61 / MAX: 7.02MIN: 6.68 / MAX: 7.01MIN: 6.83 / MAX: 7.08MIN: 6.8 / MAX: 7.16

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-152abcd2468106.967.047.046.87MIN: 6.82 / MAX: 7.1MIN: 6.9 / MAX: 7.17MIN: 6.57 / MAX: 7.18MIN: 6.73 / MAX: 7

TensorFlow

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: ResNet-50abcd36912159.719.549.739.66

TensorFlow

Device: CPU - Batch Size: 16 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: AlexNetabcd122436486053.7954.8353.8254.29

PyTorch

Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_labcd0.6571.3141.9712.6283.2852.922.922.872.88MIN: 2.82 / MAX: 3.06MIN: 2.81 / MAX: 3.04MIN: 2.74 / MAX: 2.99MIN: 2.78 / MAX: 2.98

PyTorch

Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_labcd0.6661.3321.9982.6643.332.942.932.962.91MIN: 2.82 / MAX: 3.09MIN: 2.79 / MAX: 3.06MIN: 2.81 / MAX: 3.07MIN: 2.73 / MAX: 3.13

TensorFlow

Device: CPU - Batch Size: 16 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: GoogLeNetabcd71421283530.3030.5330.2830.67

PyTorch

Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_labcd0.9811.9622.9433.9244.9054.344.314.364.34MIN: 4.15 / MAX: 4.53MIN: 3.99 / MAX: 4.46MIN: 4.13 / MAX: 4.51MIN: 4.03 / MAX: 4.53

Quicksilver

Input: CORAL2 P1

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P1abcd6M12M18M24M30M256500002580000025540000257400001. (CXX) g++ options: -fopenmp -O3 -march=native

Speedb

Test: Read Random Write Random

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Read Random Write Randomabcd500K1000K1500K2000K2500K21939332182749219484422020681. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

TensorFlow

Device: CPU - Batch Size: 1 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: AlexNetabcd1.10932.21863.32794.43725.54654.914.894.934.89

TensorFlow

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: ResNet-50abcd1.13182.26363.39544.52725.6595.025.035.024.99

Speedb

Test: Update Random

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Update Randomabcd60K120K180K240K300K2599622584942584202581681. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

Y-Cruncher

Pi Digits To Calculate: 1B

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 1Babcd510152025SE +/- 0.01, N = 319.0119.1119.1319.08

Speedb

Test: Random Read

OpenBenchmarking.orgOp/s, More Is BetterSpeedb 2.7Test: Random Readabcd40M80M120M160M200M1836160731841295821838996821830619361. (CXX) g++ options: -O3 -march=native -pthread -fno-builtin-memcmp -fno-rtti -lpthread

Quicksilver

Input: CTS2

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CTS2abcd4M8M12M16M20M207400002080000020680000207700001. (CXX) g++ options: -fopenmp -O3 -march=native

TensorFlow

Device: CPU - Batch Size: 1 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: VGG-16abcd0.4140.8281.2421.6562.071.841.831.831.84

Y-Cruncher

Pi Digits To Calculate: 5B

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 5Babcd20406080100SE +/- 0.11, N = 3111.06110.66110.86110.62

TensorFlow

Device: CPU - Batch Size: 1 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: GoogLeNetabcd2468108.698.708.728.69

Quicksilver

Input: CORAL2 P2

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P2abcd5M10M15M20M25M246100002460000024540000245500001. (CXX) g++ options: -fopenmp -O3 -march=native

Y-Cruncher

Pi Digits To Calculate: 500M

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 500Mabcd36912159.5299.5499.5329.542

Y-Cruncher

Pi Digits To Calculate: 10B

OpenBenchmarking.orgSeconds, Fewer Is BetterY-Cruncher 0.8.3Pi Digits To Calculate: 10Babcd50100150200250SE +/- 0.08, N = 3238.56238.23238.47238.57

TensorFlow

Device: CPU - Batch Size: 16 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: VGG-16abcd0.8191.6382.4573.2764.0953.643.643.643.64


Phoronix Test Suite v10.8.5