big bench

AMD Ryzen Threadripper 7980X 64-Cores testing with a ASUS Pro WS TRX50-SAGE WIFI (0217 BIOS) and AMD Radeon RX 7900 XT 20GB on Ubuntu 23.10 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2401079-PTS-BIGBENCH30&sor&grr.

big benchProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLCompilerFile-SystemScreen ResolutionabcAMD Ryzen Threadripper 7980X 64-Cores @ 8.21GHz (64 Cores / 128 Threads)ASUS Pro WS TRX50-SAGE WIFI (0217 BIOS)AMD Device 14a4128GB2000GB Corsair MP700 PRO + 1000GB Western Digital WDS100T1X0E-00AFY0AMD Radeon RX 7900 XT 20GB (2025/1249MHz)Realtek ALC1220DELL U2723QEAquantia Device 04c0 + Intel I226-LM + MEDIATEK MT7922 802.11ax PCIUbuntu 23.106.7.0-060700rc2daily20231126-generic (x86_64)GNOME Shell 45.0X Server 1.21.1.7 + Wayland4.6 Mesa 23.2.1-1ubuntu3 (LLVM 15.0.7 DRM 3.56)GCC 13.2.0ext43840x2160OpenBenchmarking.orgKernel Details- Transparent Huge Pages: madviseCompiler Details- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-XYspKM/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details- Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xa108105 Python Details- Python 3.11.6Security Details- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

big benchtensorflow: CPU - 512 - VGG-16tensorflow: CPU - 512 - ResNet-50tensorflow: CPU - 256 - VGG-16quicksilver: CTS2quicksilver: CORAL2 P2tensorflow: CPU - 256 - ResNet-50pytorch: CPU - 256 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lpytorch: CPU - 512 - Efficientnet_v2_lpytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_ltensorflow: CPU - 512 - GoogLeNetpytorch: CPU - 16 - ResNet-152pytorch: CPU - 32 - ResNet-50tensorflow: CPU - 64 - VGG-16pytorch: CPU - 32 - ResNet-152pytorch: CPU - 64 - ResNet-152pytorch: CPU - 512 - ResNet-152pytorch: CPU - 256 - ResNet-152pytorch: CPU - 1 - Efficientnet_v2_ltensorflow: CPU - 256 - GoogLeNettensorflow: CPU - 64 - ResNet-50pytorch: CPU - 256 - ResNet-50pytorch: CPU - 1 - ResNet-50pytorch: CPU - 1 - ResNet-152tensorflow: CPU - 32 - VGG-16pytorch: CPU - 16 - ResNet-50quicksilver: CORAL2 P1pytorch: CPU - 64 - ResNet-50tensorflow: CPU - 32 - ResNet-50tensorflow: CPU - 512 - AlexNetpytorch: CPU - 512 - ResNet-50tensorflow: CPU - 16 - VGG-16tensorflow: CPU - 16 - ResNet-50tensorflow: CPU - 64 - GoogLeNettensorflow: CPU - 256 - AlexNettensorflow: CPU - 1 - GoogLeNettensorflow: CPU - 1 - ResNet-50tensorflow: CPU - 32 - GoogLeNettensorflow: CPU - 1 - VGG-16tensorflow: CPU - 16 - GoogLeNettensorflow: CPU - 64 - AlexNettensorflow: CPU - 32 - AlexNettensorflow: CPU - 16 - AlexNettensorflow: CPU - 1 - AlexNetabc57.9795.0557.14200233331977666791.127.477.467.477.497.52315.4918.6847.4752.9518.7618.6918.9618.9912.19311.6080.047.4359.0421.9448.8947.472602666747.5769.431145.6647.5444.4154.70272.161070.7321.827.19226.859.74187.92740.46510.66311.9725.7257.9795.0857.11199733331973333391.137.407.457.527.457.46315.8318.6547.245318.6718.6218.4918.8012.29311.2379.7747.2459.2221.9148.9347.412601000047.2269.491148.3845.9744.554.44272.221073.5222.597.26231.619.73188.5741.77508.52312.0825.8157.9995.0457.15200900001982000091.117.547.527.487.527.50316.0418.7148.1252.9119.0219.3818.8219.1012.27311.7379.8743.0759.6921.8048.8147.602592000047.8169.171151.2746.6044.4854.72272.841075.0922.377.25222.049.72188.52741.04510.4312.1425.96OpenBenchmarking.org

TensorFlow

Device: CPU - Batch Size: 512 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 512 - Model: VGG-16cba1326395265SE +/- 0.02, N = 357.9957.9757.97

TensorFlow

Device: CPU - Batch Size: 512 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 512 - Model: ResNet-50bac20406080100SE +/- 0.01, N = 395.0895.0595.04

TensorFlow

Device: CPU - Batch Size: 256 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 256 - Model: VGG-16cab1326395265SE +/- 0.02, N = 357.1557.1457.11

Quicksilver

Input: CTS2

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CTS2cab4M8M12M16M20MSE +/- 40960.69, N = 3SE +/- 49103.07, N = 32009000020023333199733331. (CXX) g++ options: -fopenmp -O3 -march=native

Quicksilver

Input: CORAL2 P2

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P2cab4M8M12M16M20MSE +/- 23333.33, N = 3SE +/- 57831.17, N = 31982000019776667197333331. (CXX) g++ options: -fopenmp -O3 -march=native

TensorFlow

Device: CPU - Batch Size: 256 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 256 - Model: ResNet-50bac20406080100SE +/- 0.03, N = 391.1391.1291.11

PyTorch

Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_lcab246810SE +/- 0.01, N = 37.547.477.40MIN: 7.01 / MAX: 8.17MIN: 6.98 / MAX: 8.1MIN: 6.92 / MAX: 8.06

PyTorch

Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_lcab246810SE +/- 0.02, N = 37.527.467.45MIN: 5.94 / MAX: 8.1MIN: 6.94 / MAX: 8.17MIN: 6.98 / MAX: 8.07

PyTorch

Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_lbca246810SE +/- 0.01, N = 37.527.487.47MIN: 7.01 / MAX: 8.06MIN: 7.03 / MAX: 8.13MIN: 6.97 / MAX: 8.13

PyTorch

Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_lcab246810SE +/- 0.01, N = 37.527.497.45MIN: 7.05 / MAX: 8.13MIN: 6.96 / MAX: 8.11MIN: 6.99 / MAX: 8.1

PyTorch

Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lacb246810SE +/- 0.02, N = 37.527.507.46MIN: 6.92 / MAX: 8.16MIN: 7.02 / MAX: 8.12MIN: 6.82 / MAX: 8.06

TensorFlow

Device: CPU - Batch Size: 512 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 512 - Model: GoogLeNetcba70140210280350SE +/- 0.17, N = 3316.04315.83315.49

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-152cab510152025SE +/- 0.05, N = 3SE +/- 0.17, N = 318.7118.6818.65MIN: 18.25 / MAX: 18.96MIN: 18.15 / MAX: 18.95MIN: 17.9 / MAX: 19.22

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: ResNet-50cab1122334455SE +/- 0.12, N = 3SE +/- 0.43, N = 1348.1247.4747.24MIN: 44.48 / MAX: 49.1MIN: 43.75 / MAX: 48.83MIN: 40.13 / MAX: 49.58

TensorFlow

Device: CPU - Batch Size: 64 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: VGG-16bac1224364860SE +/- 0.06, N = 353.0052.9552.91

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 32 - Model: ResNet-152cab510152025SE +/- 0.14, N = 319.0218.7618.67MIN: 18.53 / MAX: 19.21MIN: 18.21 / MAX: 19.24MIN: 17.72 / MAX: 18.87

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: ResNet-152cab510152025SE +/- 0.03, N = 319.3818.6918.62MIN: 18.61 / MAX: 19.57MIN: 18.14 / MAX: 18.93MIN: 18.09 / MAX: 18.8

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: ResNet-152acb510152025SE +/- 0.05, N = 318.9618.8218.49MIN: 18.41 / MAX: 19.25MIN: 18.25 / MAX: 19.03MIN: 18.01 / MAX: 18.69

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-152cab510152025SE +/- 0.08, N = 319.1018.9918.80MIN: 18.59 / MAX: 19.3MIN: 18.38 / MAX: 19.33MIN: 18.29 / MAX: 19.02

PyTorch

Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_lbca3691215SE +/- 0.03, N = 312.2912.2712.19MIN: 12.13 / MAX: 12.42MIN: 12 / MAX: 12.4MIN: 11.91 / MAX: 12.38

TensorFlow

Device: CPU - Batch Size: 256 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 256 - Model: GoogLeNetcab70140210280350SE +/- 0.26, N = 3311.73311.60311.23

TensorFlow

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: ResNet-50acb20406080100SE +/- 0.06, N = 380.0079.8779.77

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 256 - Model: ResNet-50abc1122334455SE +/- 0.44, N = 6SE +/- 0.65, N = 347.4347.2443.07MIN: 39.54 / MAX: 49.38MIN: 39.04 / MAX: 49.14MIN: 39.73 / MAX: 45.38

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-50cba1326395265SE +/- 0.39, N = 14SE +/- 0.52, N = 359.6959.2259.04MIN: 53.84 / MAX: 61.85MIN: 49.85 / MAX: 62.35MIN: 49.45 / MAX: 62.07

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-152abc510152025SE +/- 0.08, N = 3SE +/- 0.08, N = 321.9421.9121.80MIN: 20.91 / MAX: 22.35MIN: 20.97 / MAX: 22.39MIN: 21.22 / MAX: 22.14

TensorFlow

Device: CPU - Batch Size: 32 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: VGG-16bac1122334455SE +/- 0.07, N = 348.9348.8948.81

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-50cab1122334455SE +/- 0.21, N = 3SE +/- 0.15, N = 347.6047.4747.41MIN: 43.77 / MAX: 48.91MIN: 43.56 / MAX: 48.81MIN: 43.15 / MAX: 48.78

Quicksilver

Input: CORAL2 P1

OpenBenchmarking.orgFigure Of Merit, More Is BetterQuicksilver 20230818Input: CORAL2 P1abc6M12M18M24M30MSE +/- 92796.07, N = 3SE +/- 79372.54, N = 32602666726010000259200001. (CXX) g++ options: -fopenmp -O3 -march=native

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 64 - Model: ResNet-50cab1122334455SE +/- 0.18, N = 3SE +/- 0.32, N = 347.8147.5747.22MIN: 43.73 / MAX: 48.84MIN: 43.64 / MAX: 49.11MIN: 43.76 / MAX: 48.92

TensorFlow

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: ResNet-50bac1530456075SE +/- 0.03, N = 369.4969.4369.17

TensorFlow

Device: CPU - Batch Size: 512 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 512 - Model: AlexNetcba2004006008001000SE +/- 0.89, N = 31151.271148.381145.66

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: ResNet-50acb1122334455SE +/- 0.26, N = 347.5446.6045.97MIN: 43.78 / MAX: 49.15MIN: 43.8 / MAX: 47.68MIN: 43.46 / MAX: 48.21

TensorFlow

Device: CPU - Batch Size: 16 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: VGG-16bca1020304050SE +/- 0.01, N = 344.5044.4844.41

TensorFlow

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: ResNet-50cab1224364860SE +/- 0.07, N = 354.7254.7054.44

TensorFlow

Device: CPU - Batch Size: 64 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: GoogLeNetcba60120180240300SE +/- 0.93, N = 3272.84272.22272.16

TensorFlow

Device: CPU - Batch Size: 256 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 256 - Model: AlexNetcba2004006008001000SE +/- 2.11, N = 31075.091073.521070.73

TensorFlow

Device: CPU - Batch Size: 1 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: GoogLeNetbca510152025SE +/- 0.29, N = 1522.5922.3721.82

TensorFlow

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: ResNet-50bca246810SE +/- 0.04, N = 37.267.257.19

TensorFlow

Device: CPU - Batch Size: 32 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: GoogLeNetbac50100150200250SE +/- 0.94, N = 3231.61226.85222.04

TensorFlow

Device: CPU - Batch Size: 1 - Model: VGG-16

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: VGG-16abc3691215SE +/- 0.01, N = 39.749.739.72

TensorFlow

Device: CPU - Batch Size: 16 - Model: GoogLeNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: GoogLeNetcba4080120160200SE +/- 0.56, N = 3188.52188.50187.92

TensorFlow

Device: CPU - Batch Size: 64 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 64 - Model: AlexNetbca160320480640800SE +/- 0.53, N = 3741.77741.04740.46

TensorFlow

Device: CPU - Batch Size: 32 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 32 - Model: AlexNetacb110220330440550SE +/- 0.43, N = 3510.66510.40508.52

TensorFlow

Device: CPU - Batch Size: 16 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 16 - Model: AlexNetcba70140210280350SE +/- 0.95, N = 3312.14312.08311.97

TensorFlow

Device: CPU - Batch Size: 1 - Model: AlexNet

OpenBenchmarking.orgimages/sec, More Is BetterTensorFlow 2.12Device: CPU - Batch Size: 1 - Model: AlexNetcba612182430SE +/- 0.03, N = 325.9625.8125.72


Phoronix Test Suite v10.8.5