pytorch hx

AMD Ryzen 9 5900HX testing with a ASUS G513QY v1.0 (G513QY.318 BIOS) and ASUS AMD Cezanne 512MB on Ubuntu 22.10 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2311169-PTS-PYTORCHH78&rdt&gru.

pytorch hxProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionabcAMD Ryzen 9 5900HX @ 3.30GHz (8 Cores / 16 Threads)ASUS G513QY v1.0 (G513QY.318 BIOS)AMD Renoir/Cezanne16GB512GB SAMSUNG MZVLQ512HBLU-00B00ASUS AMD Cezanne 512MB (2500/1000MHz)AMD Navi 21/23LQ156M1JW25Realtek RTL8111/8168/8411 + MEDIATEK MT7921 802.11ax PCIUbuntu 22.105.19.0-46-generic (x86_64)GNOME Shell 43.0X Server 1.21.1.4 + Wayland4.6 Mesa 22.2.5 (LLVM 15.0.2 DRM 3.47)1.3.224GCC 12.2.0ext41920x1080OpenBenchmarking.orgKernel Details- Transparent Huge Pages: madviseProcessor Details- Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - Platform Profile: balanced - CPU Microcode: 0xa50000c - ACPI Profile: balanced Python Details- Python 3.10.7Security Details- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

pytorch hxpytorch: CPU - 1 - ResNet-50pytorch: CPU - 1 - ResNet-152pytorch: CPU - 16 - ResNet-50pytorch: CPU - 16 - ResNet-152pytorch: CPU - 512 - ResNet-50pytorch: CPU - 512 - ResNet-152pytorch: CPU - 1 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_lpytorch: CPU - 512 - Efficientnet_v2_labc34.8314.9019.548.9918.388.749.376.286.2338.1715.2519.419.0719.208.729.366.276.2933.6915.2218.729.4217.588.509.416.286.17OpenBenchmarking.org

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-50abc918273645SE +/- 0.24, N = 334.8338.1733.69MIN: 27.03 / MAX: 36.83MIN: 28.84 / MAX: 39.86MIN: 28.41 / MAX: 34.46

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: ResNet-152abc48121620SE +/- 0.16, N = 414.9015.2515.22MIN: 11.55 / MAX: 16.23MIN: 13.45 / MAX: 16.23MIN: 13.18 / MAX: 16.33

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-50abc510152025SE +/- 0.17, N = 1519.5419.4118.72MIN: 14.52 / MAX: 21.45MIN: 18.05 / MAX: 20.45MIN: 16.31 / MAX: 19.95

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: ResNet-152abc3691215SE +/- 0.13, N = 38.999.079.42MIN: 8.32 / MAX: 9.79MIN: 8.38 / MAX: 9.61MIN: 8.78 / MAX: 10.02

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: ResNet-50abc510152025SE +/- 0.12, N = 318.3819.2017.58MIN: 16.56 / MAX: 20.37MIN: 17.86 / MAX: 19.94MIN: 15.72 / MAX: 20.02

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: ResNet-152abc246810SE +/- 0.04, N = 38.748.728.50MIN: 8.1 / MAX: 9.63MIN: 8.29 / MAX: 9.49MIN: 8.24 / MAX: 9.46

PyTorch

Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_labc3691215SE +/- 0.05, N = 39.379.369.41MIN: 8.24 / MAX: 9.75MIN: 8.35 / MAX: 9.62MIN: 8.85 / MAX: 9.68

PyTorch

Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_labc246810SE +/- 0.03, N = 36.286.276.28MIN: 5.55 / MAX: 6.58MIN: 5.82 / MAX: 6.55MIN: 5.98 / MAX: 6.52

PyTorch

Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.1Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_labc246810SE +/- 0.05, N = 36.236.296.17MIN: 5.69 / MAX: 6.5MIN: 5.89 / MAX: 6.52MIN: 5.86 / MAX: 6.44


Phoronix Test Suite v10.8.5