sapphire rapids october Tests for a future article. 2 x Intel Xeon Platinum 8490H testing with a Quanta Cloud S6Q-MB-MPS (3A10.uh BIOS) and ASPEED on Ubuntu 23.10 via the Phoronix Test Suite. a: Processor: 2 x Intel Xeon Platinum 8490H @ 3.50GHz (120 Cores / 240 Threads), Motherboard: Quanta Cloud S6Q-MB-MPS (3A10.uh BIOS), Chipset: Intel Device 1bce, Memory: 1008GB, Disk: 3201GB Micron_7450_MTFDKCC3T2TFS, Graphics: ASPEED, Network: 2 x Intel X710 for 10GBASE-T OS: Ubuntu 23.10, Kernel: 6.6.0-rc5-phx-patched (x86_64), Desktop: GNOME Shell 45.0, Display Server: X Server 1.21.1.7, Compiler: GCC 13.2.0, File-System: ext4, Screen Resolution: 1920x1200 b: Processor: 2 x Intel Xeon Platinum 8490H @ 3.50GHz (120 Cores / 240 Threads), Motherboard: Quanta Cloud S6Q-MB-MPS (3A10.uh BIOS), Chipset: Intel Device 1bce, Memory: 1008GB, Disk: 3201GB Micron_7450_MTFDKCC3T2TFS, Graphics: ASPEED, Network: 2 x Intel X710 for 10GBASE-T OS: Ubuntu 23.10, Kernel: 6.6.0-rc5-phx-patched (x86_64), Desktop: GNOME Shell 45.0, Display Server: X Server 1.21.1.7, Compiler: GCC 13.2.0, File-System: ext4, Screen Resolution: 1920x1200 Embree 4.3 Binary: Pathtracer - Model: Crown Frames Per Second > Higher Is Better a . 109.44 |================================================================== b . 110.46 |=================================================================== Embree 4.3 Binary: Pathtracer ISPC - Model: Crown Frames Per Second > Higher Is Better a . 123.36 |=================================================================== b . 123.25 |=================================================================== Embree 4.3 Binary: Pathtracer - Model: Asian Dragon Frames Per Second > Higher Is Better a . 126.56 |=================================================================== b . 126.98 |=================================================================== Embree 4.3 Binary: Pathtracer - Model: Asian Dragon Obj Frames Per Second > Higher Is Better a . 114.12 |=================================================================== b . 114.72 |=================================================================== Embree 4.3 Binary: Pathtracer ISPC - Model: Asian Dragon Frames Per Second > Higher Is Better a . 151.61 |=================================================================== b . 151.68 |=================================================================== Embree 4.3 Binary: Pathtracer ISPC - Model: Asian Dragon Obj Frames Per Second > Higher Is Better a . 131.43 |=================================================================== b . 131.90 |=================================================================== Intel Open Image Denoise 2.1 Run: RT.hdr_alb_nrm.3840x2160 - Device: CPU-Only Images / Sec > Higher Is Better a . 4.41 |===================================================================== b . 4.44 |===================================================================== Intel Open Image Denoise 2.1 Run: RT.ldr_alb_nrm.3840x2160 - Device: CPU-Only Images / Sec > Higher Is Better a . 4.45 |===================================================================== b . 4.37 |==================================================================== Intel Open Image Denoise 2.1 Run: RTLightmap.hdr.4096x4096 - Device: CPU-Only Images / Sec > Higher Is Better a . 2.10 |==================================================================== b . 2.12 |===================================================================== OpenVKL 2.0.0 Benchmark: vklBenchmarkCPU ISPC Items / Sec > Higher Is Better a . 2684 |===================================================================== b . 2672 |===================================================================== OpenVKL 2.0.0 Benchmark: vklBenchmarkCPU Scalar Items / Sec > Higher Is Better a . 1022 |===================================================================== b . 1021 |===================================================================== oneDNN 3.3 Harness: IP Shapes 1D - Data Type: f32 - Engine: CPU ms < Lower Is Better a . 2.28356 |===================================================== b . 2.82237 |================================================================== oneDNN 3.3 Harness: IP Shapes 3D - Data Type: f32 - Engine: CPU ms < Lower Is Better a . 2.48058 |================================================================ b . 2.54078 |================================================================== oneDNN 3.3 Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better a . 1.84590 |======================================================= b . 2.20049 |================================================================== oneDNN 3.3 Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better a . 0.783853 |=============================================================== b . 0.811661 |================================================================= oneDNN 3.3 Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better a . 9.95622 |================================================================== b . 9.89765 |================================================================== oneDNN 3.3 Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better a . 3.29789 |================================================================== b . 3.25571 |================================================================= oneDNN 3.3 Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU ms < Lower Is Better a . 0.404445 |=============================================================== b . 0.416529 |================================================================= oneDNN 3.3 Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPU ms < Lower Is Better a . 15.87 |==================================================================== b . 15.48 |================================================================== oneDNN 3.3 Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPU ms < Lower Is Better a . 0.727900 |================================================================= b . 0.720924 |================================================================ oneDNN 3.3 Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better a . 0.515277 |================================================================ b . 0.520272 |================================================================= oneDNN 3.3 Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better a . 0.414613 |================================================================= b . 0.398996 |=============================================================== oneDNN 3.3 Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better a . 0.223134 |================================================================= b . 0.220395 |================================================================ oneDNN 3.3 Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU ms < Lower Is Better a . 1099.08 |================================================================== b . 1081.21 |================================================================= oneDNN 3.3 Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU ms < Lower Is Better a . 774.63 |=============================================================== b . 823.92 |=================================================================== oneDNN 3.3 Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better a . 1073.23 |================================================================ b . 1108.59 |================================================================== oneDNN 3.3 Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better a . 0.327592 |=============================================================== b . 0.339075 |================================================================= oneDNN 3.3 Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better a . 0.434631 |================================================================= b . 0.418805 |=============================================================== oneDNN 3.3 Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better a . 0.433850 |================================================================ b . 0.437447 |================================================================= oneDNN 3.3 Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better a . 831.25 |=================================================================== b . 828.75 |=================================================================== oneDNN 3.3 Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better a . 1063.85 |================================================================= b . 1081.47 |================================================================== oneDNN 3.3 Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better a . 808.38 |=================================================================== b . 813.51 |=================================================================== easyWave r34 Input: e2Asean Grid + BengkuluSept2007 Source - Time: 240 Seconds < Lower Is Better a . 2.980 |=============================================================== b . 3.209 |==================================================================== easyWave r34 Input: e2Asean Grid + BengkuluSept2007 Source - Time: 1200 Seconds < Lower Is Better a . 52.60 |=================================================================== b . 52.99 |==================================================================== easyWave r34 Input: e2Asean Grid + BengkuluSept2007 Source - Time: 2400 Seconds < Lower Is Better a . 125.74 |================================================================ b . 132.55 |===================================================================