5900hx scikit learn

AMD Ryzen 9 5900HX testing with a ASUS G513QY v1.0 (G513QY.318 BIOS) and ASUS AMD Cezanne 512MB on Ubuntu 22.10 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2305113-NE-5900HXSCI86&sro&grs.

5900hx scikit learnProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerOpenGLVulkanCompilerFile-SystemScreen ResolutionabcAMD Ryzen 9 5900HX @ 3.30GHz (8 Cores / 16 Threads)ASUS G513QY v1.0 (G513QY.318 BIOS)AMD Renoir/Cezanne16GB512GB SAMSUNG MZVLQ512HBLU-00B00ASUS AMD Cezanne 512MB (2500/1000MHz)AMD Navi 21/23LQ156M1JW25Realtek RTL8111/8168/8411 + MEDIATEK MT7921 802.11ax PCIUbuntu 22.105.19.0-41-generic (x86_64)GNOME Shell 43.0X Server 1.21.1.4 + Wayland4.6 Mesa 22.2.5 (LLVM 15.0.2 DRM 3.47)1.3.224GCC 12.2.0ext41920x1080OpenBenchmarking.orgKernel Details- Transparent Huge Pages: madviseCompiler Details- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-U8K4Qv/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-U8K4Qv/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details- Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - Platform Profile: balanced - CPU Microcode: 0xa50000c - ACPI Profile: balanced Python Details- Python 3.10.7Security Details- itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

5900hx scikit learnscikit-learn: Sample Without Replacementscikit-learn: Treescikit-learn: Kernel PCA Solvers / Time vs. N Componentsscikit-learn: Plot Neighborsscikit-learn: Hist Gradient Boosting Categorical Onlyscikit-learn: Hist Gradient Boostingscikit-learn: MNIST Datasetscikit-learn: Text Vectorizersscikit-learn: Kernel PCA Solvers / Time vs. N Samplesscikit-learn: Sparse Rand Projections / 100 Iterationsscikit-learn: TSNE MNIST Datasetscikit-learn: Covertype Dataset Benchmarkscikit-learn: Plot Lasso Pathscikit-learn: Plot Hierarchicalscikit-learn: Plot Incremental PCAscikit-learn: Hist Gradient Boosting Higgs Bosonscikit-learn: Feature Expansionsscikit-learn: Plot Polynomial Kernel Approximationscikit-learn: Plot Singular Value Decompositionscikit-learn: 20 Newsgroups / Logistic Regressionscikit-learn: Hist Gradient Boosting Adultscikit-learn: Plot Wardscikit-learn: SAGAscikit-learn: SGD Regressionscikit-learn: Lassoscikit-learn: Plot OMP vs. LARSscikit-learn: LocalOutlierFactorscikit-learn: Hist Gradient Boosting Threadingscikit-learn: GLMscikit-learn: Sparsifyscikit-learn: Glmnetabc119.67240.724169.270138.94615.72492.23659.28258.809193.448760.377236.977378.753196.189180.44334.62767.847134.561149.925135.59742.01771.04154.355732.860101.875430.672104.78659.868183.486406.904114.745122.69641.491170.439138.21815.71693.01059.96958.185193.399767.671235.418376.287194.416179.05934.86467.709133.854150.684136.27342.22571.04154.557733.048101.663430.417104.64359.985183.553407.075114.767120.90141.617172.701140.70815.93593.36659.80058.557195.460762.752237.618375.258194.465180.30734.77267.468134.335150.152136.19342.09570.75854.368735.468102.002431.810104.96559.969183.756406.724114.830OpenBenchmarking.org

Scikit-Learn

Benchmark: Sample Without Replacement

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sample Without Replacementabc306090120150SE +/- 0.18, N = 3SE +/- 0.79, N = 3SE +/- 1.46, N = 3119.67122.70120.901. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Tree

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Treeabc918273645SE +/- 0.44, N = 5SE +/- 0.36, N = 15SE +/- 0.41, N = 540.7241.4941.621. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Kernel PCA Solvers / Time vs. N Components

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N Componentsabc4080120160200SE +/- 2.86, N = 12SE +/- 2.38, N = 12SE +/- 2.77, N = 12169.27170.44172.701. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Plot Neighbors

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Neighborsabc306090120150SE +/- 1.26, N = 3SE +/- 1.49, N = 3SE +/- 0.77, N = 3138.95138.22140.711. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Hist Gradient Boosting Categorical Only

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Categorical Onlyabc48121620SE +/- 0.08, N = 3SE +/- 0.08, N = 3SE +/- 0.18, N = 315.7215.7215.941. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Hist Gradient Boosting

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boostingabc20406080100SE +/- 0.17, N = 3SE +/- 0.95, N = 3SE +/- 0.74, N = 392.2493.0193.371. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: MNIST Dataset

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: MNIST Datasetabc1326395265SE +/- 0.07, N = 3SE +/- 0.13, N = 3SE +/- 0.08, N = 359.2859.9759.801. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Text Vectorizers

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Text Vectorizersabc1326395265SE +/- 0.02, N = 3SE +/- 0.07, N = 3SE +/- 0.14, N = 358.8158.1958.561. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Kernel PCA Solvers / Time vs. N Samples

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Kernel PCA Solvers / Time vs. N Samplesabc4080120160200SE +/- 1.38, N = 3SE +/- 0.46, N = 3SE +/- 0.78, N = 3193.45193.40195.461. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Sparse Random Projections / 100 Iterations

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sparse Random Projections / 100 Iterationsabc170340510680850SE +/- 2.60, N = 3SE +/- 1.20, N = 3SE +/- 3.45, N = 3760.38767.67762.751. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: TSNE MNIST Dataset

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: TSNE MNIST Datasetabc50100150200250SE +/- 0.39, N = 3SE +/- 0.31, N = 3SE +/- 0.31, N = 3236.98235.42237.621. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Covertype Dataset Benchmark

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Covertype Dataset Benchmarkabc80160240320400SE +/- 1.06, N = 3SE +/- 0.57, N = 3SE +/- 0.82, N = 3378.75376.29375.261. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Plot Lasso Path

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Lasso Pathabc4080120160200SE +/- 0.31, N = 3SE +/- 0.18, N = 3SE +/- 0.54, N = 3196.19194.42194.471. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Plot Hierarchical

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Hierarchicalabc4080120160200SE +/- 0.21, N = 3SE +/- 0.37, N = 3SE +/- 0.84, N = 3180.44179.06180.311. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Plot Incremental PCA

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Incremental PCAabc816243240SE +/- 0.14, N = 3SE +/- 0.50, N = 3SE +/- 0.34, N = 634.6334.8634.771. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Hist Gradient Boosting Higgs Boson

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Higgs Bosonabc1530456075SE +/- 0.07, N = 3SE +/- 0.18, N = 3SE +/- 0.02, N = 367.8567.7167.471. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Feature Expansions

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Feature Expansionsabc306090120150SE +/- 0.35, N = 3SE +/- 0.21, N = 3SE +/- 0.04, N = 3134.56133.85134.341. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Plot Polynomial Kernel Approximation

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Polynomial Kernel Approximationabc306090120150SE +/- 0.18, N = 3SE +/- 0.38, N = 3SE +/- 0.07, N = 3149.93150.68150.151. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Plot Singular Value Decomposition

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Singular Value Decompositionabc306090120150SE +/- 0.16, N = 3SE +/- 0.11, N = 3SE +/- 0.42, N = 3135.60136.27136.191. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: 20 Newsgroups / Logistic Regression

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: 20 Newsgroups / Logistic Regressionabc1020304050SE +/- 0.14, N = 3SE +/- 0.17, N = 3SE +/- 0.06, N = 342.0242.2342.101. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Hist Gradient Boosting Adult

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Adultabc1632486480SE +/- 0.07, N = 3SE +/- 0.30, N = 3SE +/- 0.08, N = 371.0471.0470.761. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Plot Ward

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot Wardabc1224364860SE +/- 0.29, N = 3SE +/- 0.18, N = 3SE +/- 0.04, N = 354.3654.5654.371. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: SAGA

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SAGAabc160320480640800SE +/- 6.30, N = 3SE +/- 1.92, N = 3SE +/- 0.31, N = 3732.86733.05735.471. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: SGD Regression

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: SGD Regressionabc20406080100SE +/- 0.26, N = 3SE +/- 0.16, N = 3SE +/- 0.25, N = 3101.88101.66102.001. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Lasso

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Lassoabc90180270360450SE +/- 0.52, N = 3SE +/- 0.98, N = 3SE +/- 0.43, N = 3430.67430.42431.811. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Plot OMP vs. LARS

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Plot OMP vs. LARSabc20406080100SE +/- 0.21, N = 3SE +/- 0.08, N = 3SE +/- 0.24, N = 3104.79104.64104.971. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: LocalOutlierFactor

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: LocalOutlierFactorabc1326395265SE +/- 0.64, N = 3SE +/- 0.58, N = 3SE +/- 0.24, N = 359.8759.9959.971. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Hist Gradient Boosting Threading

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Hist Gradient Boosting Threadingabc4080120160200SE +/- 0.15, N = 3SE +/- 0.23, N = 3SE +/- 0.21, N = 3183.49183.55183.761. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: GLM

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: GLMabc90180270360450SE +/- 2.13, N = 3SE +/- 0.79, N = 3SE +/- 0.54, N = 3406.90407.08406.721. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc

Scikit-Learn

Benchmark: Sparsify

OpenBenchmarking.orgSeconds, Fewer Is BetterScikit-Learn 1.2.2Benchmark: Sparsifyabc306090120150SE +/- 0.50, N = 3SE +/- 0.20, N = 3SE +/- 0.14, N = 3114.75114.77114.831. (F9X) gfortran options: -O3 -fopenmp -fno-tree-vectorize -lm -lpthread -lgfortran -lc


Phoronix Test Suite v10.8.5