tr onednn 3.1 AMD Ryzen Threadripper 3960X 24-Core testing with a MSI Creator TRX40 (MS-7C59) v1.0 (1.12N1 BIOS) and Gigabyte AMD Radeon RX 5500/5500M / Pro 5500M on Ubuntu 22.04 via the Phoronix Test Suite. 1: Processor: AMD Ryzen Threadripper 3960X 24-Core @ 3.80GHz (24 Cores / 48 Threads), Motherboard: MSI Creator TRX40 (MS-7C59) v1.0 (1.12N1 BIOS), Chipset: AMD Starship/Matisse, Memory: 32GB, Disk: 1000GB Sabrent Rocket 4.0 1TB, Graphics: Gigabyte AMD Radeon RX 5500/5500M / Pro 5500M (1900/875MHz), Audio: AMD Navi 10 HDMI Audio, Monitor: VA2431, Network: Aquantia AQC107 NBase-T/IEEE + Intel I211 + Intel Wi-Fi 6 AX200 OS: Ubuntu 22.04, Kernel: 5.19.0-051900rc7-generic (x86_64), Desktop: GNOME Shell 42.2, Display Server: X Server, Vulkan: 1.3.204, Compiler: GCC 11.2.0, File-System: ext4, Screen Resolution: 1920x1080 2: Processor: AMD Ryzen Threadripper 3960X 24-Core @ 3.80GHz (24 Cores / 48 Threads), Motherboard: MSI Creator TRX40 (MS-7C59) v1.0 (1.12N1 BIOS), Chipset: AMD Starship/Matisse, Memory: 32GB, Disk: 1000GB Sabrent Rocket 4.0 1TB, Graphics: Gigabyte AMD Radeon RX 5500/5500M / Pro 5500M (1900/875MHz), Audio: AMD Navi 10 HDMI Audio, Monitor: VA2431, Network: Aquantia AQC107 NBase-T/IEEE + Intel I211 + Intel Wi-Fi 6 AX200 OS: Ubuntu 22.04, Kernel: 5.19.0-051900rc7-generic (x86_64), Desktop: GNOME Shell 42.2, Display Server: X Server, Vulkan: 1.3.204, Compiler: GCC 11.2.0, File-System: ext4, Screen Resolution: 1920x1080 3: Processor: AMD Ryzen Threadripper 3960X 24-Core @ 3.80GHz (24 Cores / 48 Threads), Motherboard: MSI Creator TRX40 (MS-7C59) v1.0 (1.12N1 BIOS), Chipset: AMD Starship/Matisse, Memory: 32GB, Disk: 1000GB Sabrent Rocket 4.0 1TB, Graphics: Gigabyte AMD Radeon RX 5500/5500M / Pro 5500M (1900/875MHz), Audio: AMD Navi 10 HDMI Audio, Monitor: VA2431, Network: Aquantia AQC107 NBase-T/IEEE + Intel I211 + Intel Wi-Fi 6 AX200 OS: Ubuntu 22.04, Kernel: 5.19.0-051900rc7-generic (x86_64), Desktop: GNOME Shell 42.2, Display Server: X Server, Vulkan: 1.3.204, Compiler: GCC 11.2.0, File-System: ext4, Screen Resolution: 1920x1080 oneDNN 3.1 Harness: IP Shapes 1D - Data Type: f32 - Engine: CPU ms < Lower Is Better 1 . 1.48086 |================================================================ 2 . 1.52009 |================================================================== 3 . 1.42320 |============================================================== oneDNN 3.1 Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better 1 . 0.620631 |============================================================== 2 . 0.655153 |================================================================= 3 . 0.649985 |================================================================ oneDNN 3.1 Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better 1 . 1.27364 |================================================================= 2 . 1.28856 |================================================================== 3 . 1.23854 |=============================================================== oneDNN 3.1 Harness: IP Shapes 3D - Data Type: f32 - Engine: CPU ms < Lower Is Better 1 . 5.86072 |================================================================ 2 . 6.02685 |================================================================== 3 . 6.01761 |================================================================== oneDNN 3.1 Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU ms < Lower Is Better 1 . 8.88991 |================================================================ 2 . 9.13355 |================================================================== 3 . 9.05130 |================================================================= oneDNN 3.1 Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPU ms < Lower Is Better 1 . 6.04628 |================================================================== 2 . 5.94507 |================================================================= 3 . 6.06764 |================================================================== oneDNN 3.1 Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better 1 . 9.17873 |================================================================= 2 . 9.35510 |================================================================== 3 . 9.31373 |================================================================== oneDNN 3.1 Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better 1 . 1072.81 |================================================================= 2 . 1087.30 |================================================================== 3 . 1092.87 |================================================================== oneDNN 3.1 Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better 1 . 1.64442 |================================================================= 2 . 1.65789 |================================================================== 3 . 1.63620 |================================================================= oneDNN 3.1 Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better 1 . 2420.28 |================================================================= 2 . 2437.88 |================================================================== 3 . 2452.18 |================================================================== oneDNN 3.1 Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better 1 . 1101.92 |================================================================== 2 . 1092.44 |================================================================= 3 . 1087.80 |================================================================= oneDNN 3.1 Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better 1 . 2413.52 |================================================================= 2 . 2444.83 |================================================================== 3 . 2418.79 |================================================================= oneDNN 3.1 Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better 1 . 2.05040 |================================================================== 2 . 2.03651 |================================================================= 3 . 2.05621 |================================================================== oneDNN 3.1 Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU ms < Lower Is Better 1 . 1086.06 |================================================================= 2 . 1096.19 |================================================================== 3 . 1095.70 |================================================================== oneDNN 3.1 Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU ms < Lower Is Better 1 . 2424.99 |================================================================== 2 . 2443.40 |================================================================== 3 . 2433.47 |================================================================== oneDNN 3.1 Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPU ms < Lower Is Better 1 . 2.56022 |================================================================== 2 . 2.56663 |================================================================== 3 . 2.57774 |================================================================== oneDNN 3.1 Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better oneDNN 3.1 Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better oneDNN 3.1 Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better oneDNN 3.1 Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better oneDNN 3.1 Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better