onnx runtime 1.14 Ryzen 9 7950X AMD Ryzen 9 7950X 16-Core testing with a ASUS ROG CROSSHAIR X670E HERO (0805 BIOS) and NVIDIA GeForce RTX 2080 Ti 11GB on Ubuntu 22.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2302115-PTS-ONNXRUNT26&sor&grw .
onnx runtime 1.14 Ryzen 9 7950X Processor Motherboard Chipset Memory Disk Graphics Audio Monitor Network OS Kernel Desktop Display Server Display Driver OpenGL Vulkan Compiler File-System Screen Resolution a b c AMD Ryzen 9 7950X 16-Core @ 4.50GHz (16 Cores / 32 Threads) ASUS ROG CROSSHAIR X670E HERO (0805 BIOS) AMD Device 14d8 32GB Western Digital WD_BLACK SN850X 1000GB + 2000GB NVIDIA GeForce RTX 2080 Ti 11GB NVIDIA TU102 HD Audio ASUS MG28U Intel I225-V + Intel Wi-Fi 6 AX210/AX211/AX411 Ubuntu 22.10 6.2.0-060200rc7daily20230206-generic (x86_64) GNOME Shell 43.1 X Server 1.21.1.4 NVIDIA 525.89.02 4.6.0 1.3.224 GCC 12.2.0 + Clang 15.0.6 ext4 3840x2160 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-U8K4Qv/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-U8K4Qv/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: acpi-cpufreq performance (Boost: Enabled) - CPU Microcode: 0xa601203 Python Details - Python 3.10.7 Security Details - itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
onnx runtime 1.14 Ryzen 9 7950X onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard a b c 133.083 142.805 9.50301 10.5988 15.9169 20.4164 828.158 1163.38 1.95846 2.22091 36.2438 46.1602 385.397 448.235 137.475 162.762 50.8507 67.8959 7.51177 7.00025 105.226 94.3482 62.8235 48.9783 1.20642 0.859083 510.601 450.265 27.5897 21.6618 2.59397 2.23032 7.27337 6.1436 19.6628 14.7265 133.076 134.885 9.65791 9.18359 15.4806 18.8915 837.005 1027.74 1.9362 2.1718 35.8136 43.2445 390.811 409.349 138.19 158.694 54.0268 53.145 7.51215 7.41112 103.538 108.888 64.5931 52.9319 1.19369 0.972543 516.471 460.447 27.9202 23.1224 2.55807 2.44234 7.23578 6.30094 18.5075 18.8144 134.112 134.461 9.78889 9.21742 16.3706 15.3913 837.057 1121.9 1.90985 3.34519 35.6626 42.6883 405.072 404.95 137.196 221.555 50.4377 68.8425 7.45343 7.43464 102.153 108.488 61.0825 64.9696 1.19363 0.89087 523.598 298.934 28.0384 23.4238 2.4679 2.46863 7.28824 4.51325 19.8239 14.5238 OpenBenchmarking.org
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: GPT-2 - Device: CPU - Executor: Parallel c a b 30 60 90 120 150 134.11 133.08 133.08 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: GPT-2 - Device: CPU - Executor: Standard a b c 30 60 90 120 150 142.81 134.89 134.46 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: yolov4 - Device: CPU - Executor: Parallel c b a 3 6 9 12 15 9.78889 9.65791 9.50301 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: yolov4 - Device: CPU - Executor: Standard a c b 3 6 9 12 15 10.59880 9.21742 9.18359 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: bertsquad-12 - Device: CPU - Executor: Parallel c a b 4 8 12 16 20 16.37 15.92 15.48 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c 5 10 15 20 25 20.42 18.89 15.39 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel c b a 200 400 600 800 1000 837.06 837.01 828.16 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a c b 300 600 900 1200 1500 1163.38 1121.90 1027.74 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c 0.4407 0.8814 1.3221 1.7628 2.2035 1.95846 1.93620 1.90985 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard c a b 0.7527 1.5054 2.2581 3.0108 3.7635 3.34519 2.22091 2.17180 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c 8 16 24 32 40 36.24 35.81 35.66 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c 10 20 30 40 50 46.16 43.24 42.69 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel c b a 90 180 270 360 450 405.07 390.81 385.40 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c 100 200 300 400 500 448.24 409.35 404.95 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: super-resolution-10 - Device: CPU - Executor: Parallel b a c 30 60 90 120 150 138.19 137.48 137.20 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: super-resolution-10 - Device: CPU - Executor: Standard c a b 50 100 150 200 250 221.56 162.76 158.69 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel b a c 12 24 36 48 60 54.03 50.85 50.44 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard c a b 15 30 45 60 75 68.84 67.90 53.15 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: GPT-2 - Device: CPU - Executor: Parallel c a b 2 4 6 8 10 7.45343 7.51177 7.51215 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: GPT-2 - Device: CPU - Executor: Standard a b c 2 4 6 8 10 7.00025 7.41112 7.43464 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: yolov4 - Device: CPU - Executor: Parallel c b a 20 40 60 80 100 102.15 103.54 105.23 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: yolov4 - Device: CPU - Executor: Standard a c b 20 40 60 80 100 94.35 108.49 108.89 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: bertsquad-12 - Device: CPU - Executor: Parallel c a b 14 28 42 56 70 61.08 62.82 64.59 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c 14 28 42 56 70 48.98 52.93 64.97 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel c b a 0.2714 0.5428 0.8142 1.0856 1.357 1.19363 1.19369 1.20642 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a c b 0.2188 0.4376 0.6564 0.8752 1.094 0.859083 0.890870 0.972543 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c 110 220 330 440 550 510.60 516.47 523.60 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard c a b 100 200 300 400 500 298.93 450.27 460.45 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c 7 14 21 28 35 27.59 27.92 28.04 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c 6 12 18 24 30 21.66 23.12 23.42 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel c b a 0.5836 1.1672 1.7508 2.3344 2.918 2.46790 2.55807 2.59397 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c 0.5554 1.1108 1.6662 2.2216 2.777 2.23032 2.44234 2.46863 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: super-resolution-10 - Device: CPU - Executor: Parallel b a c 2 4 6 8 10 7.23578 7.27337 7.28824 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: super-resolution-10 - Device: CPU - Executor: Standard c a b 2 4 6 8 10 4.51325 6.14360 6.30094 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel b a c 5 10 15 20 25 18.51 19.66 19.82 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard c a b 5 10 15 20 25 14.52 14.73 18.81 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
Phoronix Test Suite v10.8.5