onnx runtime 1.14 Ryzen 9 7950X AMD Ryzen 9 7950X 16-Core testing with a ASUS ROG CROSSHAIR X670E HERO (0805 BIOS) and NVIDIA GeForce RTX 2080 Ti 11GB on Ubuntu 22.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2302115-PTS-ONNXRUNT26&rdt .
onnx runtime 1.14 Ryzen 9 7950X Processor Motherboard Chipset Memory Disk Graphics Audio Monitor Network OS Kernel Desktop Display Server Display Driver OpenGL Vulkan Compiler File-System Screen Resolution a b c AMD Ryzen 9 7950X 16-Core @ 4.50GHz (16 Cores / 32 Threads) ASUS ROG CROSSHAIR X670E HERO (0805 BIOS) AMD Device 14d8 32GB Western Digital WD_BLACK SN850X 1000GB + 2000GB NVIDIA GeForce RTX 2080 Ti 11GB NVIDIA TU102 HD Audio ASUS MG28U Intel I225-V + Intel Wi-Fi 6 AX210/AX211/AX411 Ubuntu 22.10 6.2.0-060200rc7daily20230206-generic (x86_64) GNOME Shell 43.1 X Server 1.21.1.4 NVIDIA 525.89.02 4.6.0 1.3.224 GCC 12.2.0 + Clang 15.0.6 ext4 3840x2160 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-12-U8K4Qv/gcc-12-12.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-12-U8K4Qv/gcc-12-12.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: acpi-cpufreq performance (Boost: Enabled) - CPU Microcode: 0xa601203 Python Details - Python 3.10.7 Security Details - itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional IBRS_FW STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
onnx runtime 1.14 Ryzen 9 7950X onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: yolov4 - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: bertsquad-12 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: super-resolution-10 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard a b c 133.083 7.51177 142.805 7.00025 9.50301 105.226 10.5988 94.3482 15.9169 62.8235 20.4164 48.9783 828.158 1.20642 1163.38 0.859083 1.95846 510.601 2.22091 450.265 36.2438 27.5897 46.1602 21.6618 385.397 2.59397 448.235 2.23032 137.475 7.27337 162.762 6.1436 50.8507 19.6628 67.8959 14.7265 133.076 7.51215 134.885 7.41112 9.65791 103.538 9.18359 108.888 15.4806 64.5931 18.8915 52.9319 837.005 1.19369 1027.74 0.972543 1.9362 516.471 2.1718 460.447 35.8136 27.9202 43.2445 23.1224 390.811 2.55807 409.349 2.44234 138.19 7.23578 158.694 6.30094 54.0268 18.5075 53.145 18.8144 134.112 7.45343 134.461 7.43464 9.78889 102.153 9.21742 108.488 16.3706 61.0825 15.3913 64.9696 837.057 1.19363 1121.9 0.89087 1.90985 523.598 3.34519 298.934 35.6626 28.0384 42.6883 23.4238 405.072 2.4679 404.95 2.46863 137.196 7.28824 221.555 4.51325 50.4377 19.8239 68.8425 14.5238 OpenBenchmarking.org
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: GPT-2 - Device: CPU - Executor: Parallel a b c 30 60 90 120 150 133.08 133.08 134.11 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: GPT-2 - Device: CPU - Executor: Parallel a b c 2 4 6 8 10 7.51177 7.51215 7.45343 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: GPT-2 - Device: CPU - Executor: Standard a b c 30 60 90 120 150 142.81 134.89 134.46 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: GPT-2 - Device: CPU - Executor: Standard a b c 2 4 6 8 10 7.00025 7.41112 7.43464 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: yolov4 - Device: CPU - Executor: Parallel a b c 3 6 9 12 15 9.50301 9.65791 9.78889 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: yolov4 - Device: CPU - Executor: Parallel a b c 20 40 60 80 100 105.23 103.54 102.15 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: yolov4 - Device: CPU - Executor: Standard a b c 3 6 9 12 15 10.59880 9.18359 9.21742 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: yolov4 - Device: CPU - Executor: Standard a b c 20 40 60 80 100 94.35 108.89 108.49 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c 4 8 12 16 20 15.92 15.48 16.37 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c 14 28 42 56 70 62.82 64.59 61.08 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c 5 10 15 20 25 20.42 18.89 15.39 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c 14 28 42 56 70 48.98 52.93 64.97 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c 200 400 600 800 1000 828.16 837.01 837.06 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c 0.2714 0.5428 0.8142 1.0856 1.357 1.20642 1.19369 1.19363 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c 300 600 900 1200 1500 1163.38 1027.74 1121.90 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c 0.2188 0.4376 0.6564 0.8752 1.094 0.859083 0.972543 0.890870 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c 0.4407 0.8814 1.3221 1.7628 2.2035 1.95846 1.93620 1.90985 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c 110 220 330 440 550 510.60 516.47 523.60 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c 0.7527 1.5054 2.2581 3.0108 3.7635 2.22091 2.17180 3.34519 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c 100 200 300 400 500 450.27 460.45 298.93 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c 8 16 24 32 40 36.24 35.81 35.66 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c 7 14 21 28 35 27.59 27.92 28.04 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c 10 20 30 40 50 46.16 43.24 42.69 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c 6 12 18 24 30 21.66 23.12 23.42 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c 90 180 270 360 450 385.40 390.81 405.07 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c 0.5836 1.1672 1.7508 2.3344 2.918 2.59397 2.55807 2.46790 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c 100 200 300 400 500 448.24 409.35 404.95 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c 0.5554 1.1108 1.6662 2.2216 2.777 2.23032 2.44234 2.46863 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c 30 60 90 120 150 137.48 138.19 137.20 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c 2 4 6 8 10 7.27337 7.23578 7.28824 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c 50 100 150 200 250 162.76 158.69 221.56 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c 2 4 6 8 10 6.14360 6.30094 4.51325 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c 12 24 36 48 60 50.85 54.03 50.44 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c 5 10 15 20 25 19.66 18.51 19.82 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.14 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c 15 30 45 60 75 67.90 53.15 68.84 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.14 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c 5 10 15 20 25 14.73 18.81 14.52 1. (CXX) g++ options: -ffunction-sections -fdata-sections -march=native -mtune=native -O3 -flto=auto -fno-fat-lto-objects -ldl -lrt
Phoronix Test Suite v10.8.5