onednn tgl Intel Core i7-1165G7 testing with a Dell 0GG9PT (3.3.0 BIOS) and Intel Xe TGL GT2 3GB on Ubuntu 21.10 via the Phoronix Test Suite. A: Processor: Intel Core i7-1165G7 @ 4.70GHz (4 Cores / 8 Threads), Motherboard: Dell 0GG9PT (3.3.0 BIOS), Chipset: Intel Tiger Lake-LP, Memory: 16GB, Disk: Kioxia KBG40ZNS256G NVMe 256GB, Graphics: Intel Xe TGL GT2 3GB (1300MHz), Audio: Realtek ALC289, Network: Intel Wi-Fi 6 AX201 OS: Ubuntu 21.10, Kernel: 5.13.0-52-generic (x86_64), Desktop: GNOME Shell 40.5, Display Server: X Server + Wayland, OpenGL: 4.6 Mesa 21.2.2, Vulkan: 1.2.182, Compiler: GCC 11.2.0, File-System: ext4, Screen Resolution: 1920x1200 B: Processor: Intel Core i7-1165G7 @ 4.70GHz (4 Cores / 8 Threads), Motherboard: Dell 0GG9PT (3.3.0 BIOS), Chipset: Intel Tiger Lake-LP, Memory: 16GB, Disk: Kioxia KBG40ZNS256G NVMe 256GB, Graphics: Intel Xe TGL GT2 3GB (1300MHz), Audio: Realtek ALC289, Network: Intel Wi-Fi 6 AX201 OS: Ubuntu 21.10, Kernel: 5.13.0-52-generic (x86_64), Desktop: GNOME Shell 40.5, Display Server: X Server + Wayland, OpenGL: 4.6 Mesa 21.2.2, Vulkan: 1.2.182, Compiler: GCC 11.2.0, File-System: ext4, Screen Resolution: 1920x1200 C: Processor: Intel Core i7-1165G7 @ 4.70GHz (4 Cores / 8 Threads), Motherboard: Dell 0GG9PT (3.3.0 BIOS), Chipset: Intel Tiger Lake-LP, Memory: 16GB, Disk: Kioxia KBG40ZNS256G NVMe 256GB, Graphics: Intel Xe TGL GT2 3GB (1300MHz), Audio: Realtek ALC289, Network: Intel Wi-Fi 6 AX201 OS: Ubuntu 21.10, Kernel: 5.13.0-52-generic (x86_64), Desktop: GNOME Shell 40.5, Display Server: X Server + Wayland, OpenGL: 4.6 Mesa 21.2.2, Vulkan: 1.2.182, Compiler: GCC 11.2.0, File-System: ext4, Screen Resolution: 1920x1200 AOM AV1 3.5 Encoder Mode: Speed 0 Two-Pass - Input: Bosphorus 4K Frames Per Second > Higher Is Better A . 0.08 |===================================================================== B . 0.08 |===================================================================== C . 0.07 |============================================================ AOM AV1 3.5 Encoder Mode: Speed 4 Two-Pass - Input: Bosphorus 4K Frames Per Second > Higher Is Better A . 2.47 |===================================================================== B . 2.43 |==================================================================== C . 2.39 |=================================================================== AOM AV1 3.5 Encoder Mode: Speed 6 Realtime - Input: Bosphorus 4K Frames Per Second > Higher Is Better A . 13.43 |====================================================== B . 16.88 |==================================================================== C . 14.10 |========================================================= AOM AV1 3.5 Encoder Mode: Speed 6 Two-Pass - Input: Bosphorus 4K Frames Per Second > Higher Is Better A . 4.62 |===================================================================== B . 4.55 |==================================================================== C . 4.41 |================================================================== AOM AV1 3.5 Encoder Mode: Speed 8 Realtime - Input: Bosphorus 4K Frames Per Second > Higher Is Better A . 23.72 |==================================================================== B . 23.29 |=================================================================== C . 22.70 |================================================================= AOM AV1 3.5 Encoder Mode: Speed 9 Realtime - Input: Bosphorus 4K Frames Per Second > Higher Is Better A . 44.25 |==================================================================== B . 43.02 |================================================================== C . 41.88 |================================================================ AOM AV1 3.5 Encoder Mode: Speed 10 Realtime - Input: Bosphorus 4K Frames Per Second > Higher Is Better A . 45.49 |==================================================================== B . 44.90 |=================================================================== C . 44.63 |=================================================================== AOM AV1 3.5 Encoder Mode: Speed 0 Two-Pass - Input: Bosphorus 1080p Frames Per Second > Higher Is Better A . 0.24 |===================================================================== B . 0.24 |===================================================================== C . 0.23 |================================================================== AOM AV1 3.5 Encoder Mode: Speed 4 Two-Pass - Input: Bosphorus 1080p Frames Per Second > Higher Is Better A . 6.44 |================================================================= B . 6.86 |===================================================================== C . 6.24 |=============================================================== AOM AV1 3.5 Encoder Mode: Speed 6 Realtime - Input: Bosphorus 1080p Frames Per Second > Higher Is Better A . 37.31 |==================================================================== B . 35.00 |================================================================ C . 36.91 |=================================================================== AOM AV1 3.5 Encoder Mode: Speed 6 Two-Pass - Input: Bosphorus 1080p Frames Per Second > Higher Is Better A . 18.18 |==================================================================== B . 17.17 |================================================================ C . 17.08 |================================================================ AOM AV1 3.5 Encoder Mode: Speed 8 Realtime - Input: Bosphorus 1080p Frames Per Second > Higher Is Better A . 96.48 |==================================================================== B . 94.42 |=================================================================== C . 91.09 |================================================================ AOM AV1 3.5 Encoder Mode: Speed 9 Realtime - Input: Bosphorus 1080p Frames Per Second > Higher Is Better A . 127.97 |=================================================================== B . 125.45 |================================================================== C . 124.81 |================================================================= AOM AV1 3.5 Encoder Mode: Speed 10 Realtime - Input: Bosphorus 1080p Frames Per Second > Higher Is Better A . 135.51 |=========================================================== B . 131.73 |========================================================= C . 154.46 |=================================================================== oneDNN 2.7 Harness: IP Shapes 1D - Data Type: f32 - Engine: CPU ms < Lower Is Better A . 7.29842 |================================================================== B . 7.06261 |================================================================ C . 7.25014 |================================================================== oneDNN 2.7 Harness: IP Shapes 3D - Data Type: f32 - Engine: CPU ms < Lower Is Better A . 6.74427 |================================================================== B . 6.50468 |================================================================ C . 6.69702 |================================================================== oneDNN 2.7 Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better A . 1.79351 |=============================================================== B . 1.67785 |=========================================================== C . 1.87285 |================================================================== oneDNN 2.7 Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better A . 2.25589 |======================================================= B . 2.69712 |================================================================== C . 2.67313 |================================================================= oneDNN 2.7 Harness: IP Shapes 1D - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better A . 18.29 |==================================================================== B . 18.21 |==================================================================== C . 18.19 |==================================================================== oneDNN 2.7 Harness: IP Shapes 3D - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better A . 6.24654 |================================================================= B . 6.12187 |================================================================ C . 6.30613 |================================================================== oneDNN 2.7 Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU ms < Lower Is Better A . 8.52755 |================================================================== B . 8.56756 |================================================================== C . 8.56771 |================================================================== oneDNN 2.7 Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPU ms < Lower Is Better A . 12.97 |==================================================================== B . 12.37 |================================================================= C . 12.55 |================================================================== oneDNN 2.7 Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPU ms < Lower Is Better A . 10.19 |=================================================================== B . 10.23 |==================================================================== C . 10.30 |==================================================================== oneDNN 2.7 Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better A . 7.65511 |================================================================= B . 7.73506 |================================================================== C . 7.76604 |================================================================== oneDNN 2.7 Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better A . 2.09604 |================================================================== B . 2.08509 |================================================================== C . 2.09736 |================================================================== oneDNN 2.7 Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better A . 2.44793 |================================================================== B . 2.44343 |================================================================== C . 2.45115 |================================================================== oneDNN 2.7 Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU ms < Lower Is Better A . 7830.31 |=============================================================== B . 7816.97 |=============================================================== C . 8169.46 |================================================================== oneDNN 2.7 Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU ms < Lower Is Better A . 4037.24 |================================================================ B . 3898.97 |============================================================== C . 4147.09 |================================================================== oneDNN 2.7 Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better A . 7826.49 |================================================================= B . 7909.08 |================================================================= C . 7976.03 |================================================================== oneDNN 2.7 Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better A . 51.97 |==================================================================== B . 47.25 |============================================================== C . 51.41 |=================================================================== oneDNN 2.7 Harness: Deconvolution Batch shapes_1d - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better A . 53.24 |==================================================================== B . 49.17 |=============================================================== C . 52.98 |==================================================================== oneDNN 2.7 Harness: Deconvolution Batch shapes_3d - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better A . 37.60 |==================================================================== B . 37.56 |==================================================================== C . 37.59 |==================================================================== oneDNN 2.7 Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better A . 3957.91 |================================================================== B . 3946.04 |================================================================== C . 3966.96 |================================================================== oneDNN 2.7 Harness: Matrix Multiply Batch Shapes Transformer - Data Type: f32 - Engine: CPU ms < Lower Is Better A . 3.24691 |================================================================== B . 3.24844 |================================================================== C . 3.25077 |================================================================== oneDNN 2.7 Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better A . 8010.02 |================================================================== B . 7977.08 |================================================================= C . 8053.63 |================================================================== oneDNN 2.7 Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better A . 4026.31 |================================================================= B . 4063.97 |================================================================== C . 4011.37 |================================================================= oneDNN 2.7 Harness: Matrix Multiply Batch Shapes Transformer - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better A . 1.41697 |================================================================== B . 1.41543 |================================================================== C . 1.41289 |================================================================== oneDNN 2.7 Harness: Matrix Multiply Batch Shapes Transformer - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better A . 9.79123 |================================================================= B . 8.46986 |======================================================== C . 9.91517 |================================================================== Y-Cruncher 0.7.10.9513 Pi Digits To Calculate: 500M Seconds < Lower Is Better A . 29.32 |=================================================================== B . 29.43 |=================================================================== C . 29.66 |====================================================================